PLAN HIDROLÓGICO DE LA PARTE ESPAÑOLA DE LA DEMARCACIÓN HIDROGRÁFICA DEL TAJO

Revisión de tercer ciclo (2022-2027)

ANEJO Nº 9

Evaluación del estado de las masas de agua

Diciembre 2022

Confederación Hidrográfica del Tajo O.A.

ÍNDICE

1.		Introd	ducción		8
2.				3	
	2.1	•	· ·		
	2.2	_		de la Planificación Hidrológica	
	2.3			e Planificación Hidrológica	
	2.4	Rea	l Decreto	817/2015 (RDSE)	11
	2.5	Inst	rucción d	el Secretario de Estado de Medio Ambiente (SEMA 14-10-2020)	12
	2.6	Pro	tocolo de	caracterización hidromorfológica y protocolo para el cálculo de métricas	
				dores hidromorfológicos de las masas de agua categoría río	
3.				ara la evaluación del estado	
	3.1			el estado de las masas de agua superficial	
	3.1	1.1	•	Potencial ecológico	
			3.1.1.1	Ríos	
			3.1.1.2	Embalses	
			3.1.1.3	Lagos	
		1.2		químico	
		1.3		inal	
	3.2			el estado de las masas de agua subterránea	
	3.2	2.1		ón del estado cuantitativo	
			3.2.1.1	Test 1 de balance hídrico	
			3.2.1.2	Test 2 de Masas de agua superficial asociadas a las aguas subterráneas	
			3.2.1.3	Test 3 de ecosistemas dependientes de las aguas subterráneas	
	3.2	2.2		ón del estado químico	
			3.2.2.1	Test 1 Evaluación general del estado químico	
				Test 2 de salinización y otras intrusiones	
			3.2.2.3	Test 3 de masas de agua superficiales asociadas a las aguas subterráneas	
			3.2.2.4	Test 4 de ecosistemas dependientes de las aguas subterráneas	
			3.2.2.5	3.2.2.5. Test 5 de Zonas protegidas por captación de aguas de consumo	
			3.2.2.3	(ZPAC)	
4.		Estad	o de las m	nasas de agua	
	4.1			estado de las masas de agua superficial	
	4.1	1.1	Estado y	potencial ecológico	90
			4.1.1.1	Estado ecológico en masas de agua naturales	
			4.1.1.2	Potencial ecológico en masas de agua muy modificadas	95
	4.1	1.2	Estado d	químico	. 99
			4.1.2.1	Estado químico en masas de agua naturales	101

	4.1.2.2	Estado químico en masas de agua muy modificadas y artificiales	102
4.1.3	Estado f	final de las masas de agua superficial	103
4.2 Evo	olución de	l estado de las masas de agua superficial	105
4.2.1	Evolució	ón del estado y potencial ecológico	105
	4.2.1.1	Masas de agua naturales	106
	4.2.1.2	Masas de agua muy modificadas y artificiales	108
4.2.2	Evolució	ón del estado químico	109
	4.2.2.1	Masas de agua naturales	110
	4.2.2.2	Masas de agua muy modificadas y artificiales	111
4.2.3	Evolució	ón del estado final de las masas de agua superficial	112
4.2.4	Mejora	del estado de las masas de agua superficial	113
4.2.5	Empeor	amiento del estado de las masas de agua superficial	117
4.3 Est	ado de las	s masas de agua subterránea	120
4.3.1	Estado d	cuantitativo	120
4.3.2	Estado (químico	121

ÍNDICE DE FIGURAS

Figura 1. Esquema de valoración del estado ecológico	16
Figura 2. Gráficos con ecuaciones de normalización de EQR para tipologías 1, 3, 4, 5 y 6	29
Figura 3. Gráficos con ecuaciones de normalización de EQR para tipologías 7, 8, 9, 10, 11 y 12	29
Figura 4. Contaminación ubicua	36
Figura 5. Procedimiento del Test 1 (MITECO 2020)	39
Figura 6. Procedimiento del TEST 2 (MITECO 2020)	44
Figura 7. Procedimiento del Test 3 (MITECO 2020)	53
Figura 8. Estado/Potencial ecológico de las masas de agua superficial de la cuenca del Tajo	91
Figura 9. Estado ecológico de las masas de agua naturales (ríos y lagos) en la cuenca del Tajo	92
Figura 10. Estado ecológico río naturales	92
Figura 11. Estado ecológico lagos naturales	92
Figura 12. Calidad biológica en ríos naturales en la cuenca del Tajo	92
Figura 13. Calidad fisicoquímica en ríos naturales en la cuenca del Tajo	92
Figura 14. Calidad hidromorfológica en ríos naturales en la cuenca del Tajo	93
Figura 15. Estado ecológico en ríos naturales en la cuenca del Tajo	94
Figura 16. Calidad biológica en lagos naturales de la cuenca del Tajo	94
Figura 17. Calidad fisicoquímica en lagos naturales en la cuenca de Tajo	94
Figura 18. Estado ecológico en masas tipo lago natural en la cuenca del Tajo	95
Figura 19. Potencial ecológico de las masas de agua muy modificadas o artificiales (ríos y embalses)	96
Figura 20. Potencial ecológico ríos artificiales o muy modificados	96
Figura 21. Potencial ecológico embalses artificiales o muy modificados	96
Figura 22. Calidad biológica en masas de agua rio HMWB y AW en la cuenca del Tajo	97
Figura 23. Calidad fisicoquímica en masas de agua río HMWV y AW en la cuenca del Tajo	97
Figura 24. Calidad Hidromorfológica (IPH) en masas de agua río HMWB y AW en la cuenca del	
Tajo	97
Figura 25. Calidad hidromorfológica (Protocolo de HMF: IIdeH) en masas de agua río HMWB y AW en la cuenca del Tajo	97
Figura 26. Potencial ecológico de las masas de agua superficial río HMWB y AW de la cuenca del Tajo	
Figura 27. Potencial ecológico de las masas de agua HMWB y AW tipo lago (embalses) en la cuenca del Tajo	
Figura 28. Estado químico de todas las masas de agua superficial	
Figura 29. Estado químico en ríos	
Figura 30. Estado químico en lagos	
Figura 31. Estado químico en embalses	
Figura 32. Estado químico de las masas de agua superficial de la cuenca del Tajo	
O - 4	

Figura 33.	Masas de agua superficial con mal estado químico por incumplimientos de la NCA de	
	cipermetrina	01
Figura 34.	Estado químico de las masas de agua superficial tipo río natural de la cuenca del Tajo 1	L 01
Figura 35.	Estado químico de las masas de agua superficial tipo lago natural de la cuenca del	
	Tajo	02
Figura 36.	Estado químico de las masas superficial tipo rio HMWB y AW en la cuenca del Tajo 1	L 0 2
Figura 37.	Estado químico masa superficial tipo lago (embalses) HMWB y AW en la cuenca del	
	Tajo	103
Figura 38.	Estado final de todas las masas de agua superficial	L 0 4
Figura 39.	Estado final en ríos	L 0 4
Figura 40.	Estado final en lagos	L 0 4
Figura 41.	Estado final en embalses	L 0 4
Figura 42.	Estado final de las masas de agua superficiales de la cuenca del Tajo	L 0 4
Figura 43.	Evolución del estado ecológico en las masas de agua de la cuenca del Tajo	106
Figura 44.	Evolución estado químico en las masas de agua de agua en la cuenca del Tajo	10
Figura 45.	Evolución estado final de las masas de agua en la cuenca del Tajo	l13
Figura 46.	Mejora del estado/potencial ecológico o del estado químico de las masas de agua	
	superficial de la cuenca del Tajo1	13
Figura 47.	Mejora del estado final de las masas de agua superficial de la cuenca del Tajo	L 1 4
Figura 48.	Deterioro del estado/potencial ecológico o químico de las masas de agua superficial	
	de la cuenca del Tajo1	17
Figura 49.	Deterioro del estado final de las masas de agua superficial de la cuenca del Tajo 1	12

ÍNDICE DE TABLAS

Tabla 1. Clasificación del estado ecológico o potencial ecológico	. 15
Tabla 2. Elementos de calidad que se muestrean en las redes de control de la cuenca del Tajo	. 17
Tabla 3. Condiciones de referencia y los límites de clases de estado para las diferentes tipologías de masas en condiciones naturales presentes en la Demarcación Hidrográfica del Tajo	
Tabla 4. NCA de los contaminantes específicos de cuenca propuestos	. 22
Tabla 5. Criterios de evaluación del potencial ecológico con indicadores indirectos de hábitat	. 25
Tabla 6. Elementos de calidad en embalses en la cuenca del Tajo	. 25
Tabla 7. Valores de referencia para la evaluación del potencial ecológico en los embalses de la cuenca del Tajo	. 27
Tabla 8. Ecuaciones de conversión para el cálculo del EQR en las masas tipo embalse en la cuenca del Tajo	. 28
Tabla 9. Escala de clasificación del potencial ecológico en embalses según los valores de los EQR normalizados promedio	
Tabla 10. Umbrales para clasificar el estado trófico de las masas de agua continentales a partir de criterios OCDE	. 31
Tabla 11. Elementos de calidad muestreados en lagos de la cuenca del Tajo	. 32
Tabla 12. Valores de referencia para la evaluación del estado ecológico de los lagos de la cuenca del Tajo	
Tabla 13. Clasificación del estado químico en las masas de agua superficial de la cuenca del Tajo	. 37
Tabla 14. Clasificación del estado final en las masas de agua superficial de la cuenca del Tajo	. 37
Tabla 15. Propuesta de masas de agua subterráneas en riesgo de no alcanzar el buen estado cuantitativo	. 38
Tabla 16. Características y tendencias piezométricas de las de las MSBT en riesgo cuantitativo	. 40
Tabla 17. Recurso disponible estimado, en hm³/año para las MSBT	. 41
Tabla 18. Aprovechamientos activos de agua subterránea por usos en hm³/año (Leyenda: A-abastecimiento (extracciones o derechos concesionales), R-regadío, G- ganadería, I- industrial	42
Tabla 19. Cálculo del índice de explotación para las MSBT en riesgo	
Tabla 20. Balance hídrico de las MSBT en riesgo	
Tabla 21. MSPF con estado ecológico inferior a bueno, relacionadas con las aguas subterráneas; Estado BIO MD-Moderado, D-Deficiente, M-Malo; Piezómetro (tendencia): A- ascenso, D- descenso, SD-suave descenso; S-superficie, EX extracciones, IEP- índice de explotación parcial)	
Tabla 22. Masas de agua subterráneas en riesgo de no alcanzar el buen estado químico	. 54
Tabla 23. Relación masa de agua subterránea en riesgo y presión por contaminación difusa	. 56
Tabla 24. Relación de masas de agua y resultados del test 1	. 57
Tabla 25. Resultado test 2	. 59

Tabla 26. Masas de agua superficial que incumplen el contenido en nitratos, con su MSBT asociada	61
Tabla 27. Resultados de la aplicación del test 3 (media NO₃ 2018-19 y VU son mg/L NO₃)	63
Tabla 28. Distribución de los tipos de hábitat que son representativos y no alcanzan el buen	
estado de conservación señalados por EDAS en MSPF vinculadas a MSBT	65
Tabla 29. Resultado de la aplicación del test 3	66
Tabla 30. Resultado de la aplicación del test 4.	68
Tabla 31. Resultados de la aplicación del test 5.	69
Tabla 32. Clasificación de las masas de agua superficiales en la cuenca del Tajo, según su estado o potencial ecológico, su estado químico y su estado final	
Tabla 33. Resumen de la clasificación del estado/potencial ecológico de las masas de agua superficial naturales de la cuenca del Tajo	90
Tabla 34. Resumen de la clasificación del estado ecológico de las masas de agua superficial naturales de la cuenca del Tajo	91
Tabla 35. Resumen de la clasificación del estado ecológico de las masas de agua superficial lineales naturales de la cuenca del Tajo según su tipología	93
Tabla 36. Resumen de la clasificación del estado ecológico de las masas de agua de categoría lago naturales de la cuenca del Tajo según su tipología	95
Tabla 37. Resumen de la clasificación del potencial ecológico de las masas superficiales artificiales o muy modificadas de la cuenca del Tajo	95
Tabla 38. Resumen de la clasificación del potencial ecológico de las masas superficials lineales muy modificadas y artificiales de la cuenca del Tajo según su tipología	
Tabla 39. Resumen de la clasificación del potencial ecológico de las masas superficial poligonales muy modificadas y artificiales (embalses) de la cuenca del Tajo según su tipología	99
Tabla 40. Resumen de la clasificación del estado químico de las masas de agua superficial de la cuenca del Tajo	99
Tabla 41. Resumen de la clasificación del estado de las masas de agua superficial de la cuenca del Tajo	. 103
Tabla 42. Evolución del estado ecológico de los ríos naturales de la cuenca del Tajo	. 106
Tabla 43. Evolución del estado ecológico de los lagos naturales de la cuenca del Tajo	. 107
Tabla 44. Evolución del potencial ecológico de los ríos muy modificados y artificiales de la cuenca del Tajo	. 108
Tabla 45. Evolución del potencial ecológico de los embalses muy modificados y artificiales de la cuenca del Tajo	
Tabla 46. Evolución del estado químico de los ríos naturales de la cuenca del Tajo	
Tabla 47. Evolución del estado químico de los lagos naturales de la cuenca del Tajo	
Tabla 48. Evolución del estado químico de los ríos muy modificados y artificiales	. 111
Tabla 49. Evolución del estado químico de los embalses muy modificados y artificiales de la	
cuenca del Tajo	. 112

Tabla 50. Evolución del estado final de las masas de agua superficial de la cuenca del Tajo	112
Tabla 51. Masas de agua superficial cuyo estado ha mejorado	116
Tabla 52. Deterioro del estado final por categoría y naturaleza de masa de agua superficial	118
Tabla 53. Masas de agua superficial cuyo estado ha empeorado	120
Tabla 54. Evaluación del estado cuantitativo de las masas de agua subterránea en riesgo	121
Tabla 55. Estado químico de las masas de agua subterráneas	122

1. Introducción

El objetivo esencial de la protección de las aguas es prevenir el deterioro, proteger y mejorar el estado de los ecosistemas acuáticos, así como de los ecosistemas terrestres y humedales que dependan de modo directo de los acuáticos en relación con sus necesidades de agua.

Entre los objetivos medioambientales establecidos en el artículo 92 bis del Texto Refundido de la Ley de Aguas, se encuentra alcanzar el buen estado de las masas de agua superficial y subterránea.

Los programas de control de las aguas permiten realizar un seguimiento del estado de las masas, con el fin de detectar aquellas que se encuentren en riesgo de no alcanzar los objetivos medioambientales, y poder así implantar los programas de medidas necesarios.

Mediante estos programas de control se realiza la evaluación de diferentes indicadores dependiendo de la categoría de las masas, con el objeto de realizar un diagnóstico del estado de las mismas. En el Anejo 8 puede consultarse con mayor detalle la información asociada a los programas de control.

El estado de las masas de agua superficial viene determinado por su estado ecológico y químico, y para su evaluación se consideran indicadores biológicos, fisicoquímicos e hidromorfológicos. En el caso de las masas de agua superficial artificiales o muy modificadas, el estado viene determinado por su potencial ecológico y su estado químico.

En cuanto a las aguas subterráneas, el estado viene determinado por su estado cuantitativo y químico, para lo cual se consideran únicamente indicadores fisicoquímicos y cuantitativos

El presente anejo tiene por objeto presentar el estudio de la evaluación del estado de las masas de agua tanto superficiales como subterráneas en el tercer ciclo de planificación en la cuenca del Tajo, conforme a la Directiva 2000/60/CE. La información de base utilizada en la evaluación del estado de las masas de agua del tercer ciclo de planificación hidrológica se corresponde a los datos recogidos a través de las redes de seguimiento para el periodo 2015 – 2019 (y para ciertas masas de agua, también se ha contado con información del 2020).

Para la evaluación del estado o potencial ecológico, y estado químico de las masas de agua superficial, así como el estado cualitativo y cuantitativo de las masas de agua subterránea, se han aplicado una serie de criterios basados principalmente en la normativa vigente, el Real Decreto 81/2015 y las Guías de Estado del MITECO, que a su vez incluyen las determinaciones de la declaración ambiental del PHT 2016, aprobada mediante la Resolución de 7 de septiembre de 2015, y así como las exigencias de la Comisión Europea realizadas en los informes los planes de cuenca, periodo 2015-2021 en cuanto a la mejora en los criterios de evaluación de estado de las masas, condiciones de referencia e indicadores de estado.

2. Base normativa

2.1 Ley de Aguas

El Texto Refundido de la Ley de Aguas (TRLA), aprobado mediante el Real Decreto Legislativo 1/2001, de 20 de julio, incorpora al ordenamiento jurídico español gran parte de los requerimientos de la DMA mediante las modificaciones realizadas por la Ley 62/2003, de 30 de diciembre, de medidas fiscales, administrativas y del orden social.

En su artículo 92.ter. se establece la obligación de distinguir diferentes estados o potenciales en las masas de agua, debiendo diferenciarse al menos entre las aguas superficiales, las aguas subterráneas y las masas de agua artificiales y muy modificadas. Para ello, deben establecerse programas de seguimiento de las aguas, que permitan obtener una visión general coherente y completa del estado de las mismas.

La determinación de las condiciones técnicas definitorias de cada uno de los estados y potenciales, así como de los criterios para su clasificación, quedan relegadas a su desarrollo por vía reglamentaria, a través del Reglamento de la Planificación Hidrológica.

Por último, el artículo 42.1 establece que los planes hidrológicos de cuenca deben contener las redes de control establecidas para el seguimiento del estado de las aguas superficiales, de las aguas subterráneas y de las zonas protegidas, así como los resultados de dichos controles.

2.2 Reglamento de la Planificación Hidrológica

El Reglamento de la Planificación Hidrológica (RPH), aprobado mediante el Real Decreto 907/2007, de 6 de julio, desarrolla aquellos aspectos de la DMA relacionados con la planificación hidrológica y la clasificación del estado de las masas de agua que, por su excesivo detalle, no fueron incorporados en el TRLA.

Del artículo 26 al 34 queda definida la metodología utilizada para la clasificación del estado de las aguas superficiales y subterráneas, partiendo de la información recogida en los programas de control, que deberán constar de al menos un control de vigilancia, un control operativo y, si se considera necesario, un control de investigación.

El estado de las masas de agua superficial queda determinado por el peor valor de su estado ecológico y estado químico. A través de los programas de control, se evalúan diferentes elementos de calidad biológicos, fisicoquímicos e hidromorfológicos descritos en los artículos citados del Reglamento, que permiten clasificar su estado ecológico y químico.

En lo que respecta a las masas de agua superficial artificiales o muy modificadas, su estado viene determinado por el peor valor de su potencial ecológico y estado químico, si bien se utilizan los mismos indicadores que para las masas de agua naturales asimilables.

El estado de las masas de agua subterráneas queda determinado por el peor valor de su estado cuantitativo y estado químico. Para su clasificación, se evalúan indicadores de tipo cuantitativo y fisicoquímicos.

El plan hidrológico debe incluir mapas en los que se muestre el estado o potencial ecológico y el estado químico para cada masa de agua superficial, y el estado cuantitativo y químico para cada masa de agua subterránea.

2.3 Instrucción de Planificación Hidrológica

La Instrucción de Planificación Hidrológica (IPH), aprobada mediante Orden ARM/2656/2008, de 10 de septiembre, desarrolla en profundidad el RPH incluyendo los criterios técnicos para la sistematización de los trabajos de elaboración de los planes hidrológicos de cuenca.

El punto 5 desarrolla las consideraciones sobre el estado de las aguas, tanto superficiales como subterráneas, incluyendo cuestiones relativas a los programas de control y la clasificación, evaluación y evolución temporal del estado de las masas de agua.

La clasificación del estado de las masas de agua superficial quedará determinada por el peor valor de su estado ecológico y de su estado químico.

Para la clasificación del estado o potencial ecológico de las masas de agua superficial, la IPH establece los indicadores de los elementos de calidad que, de forma general, deben ser utilizados en el plan hidrológico. Asimismo, en el Anejo III se especifican los valores de condiciones de referencia y de límites de cambio de clase de estado o potencial ecológico para algunos de ellos.

El estado ecológico de las masas de agua superficial se clasificará como muy bueno, bueno, moderado, deficiente o malo. En el caso de las masas de agua muy modificadas o artificiales se determinará el potencial ecológico, que se clasificará como máximo, bueno, moderado, deficiente o malo.

En lo referente a la clasificación del estado químico de las masas de agua superficial, éste se determina de acuerdo con el cumplimiento de las normas de calidad medioambiental (NCA) respecto a las sustancias de la Lista I y la Lista II prioritaria del anexo IV del RPH, así como del resto de NCA establecidas a nivel europeo. En la actualidad, las NCA a nivel europeo vienen establecidas en la Directiva 2008/105/CE, transpuesta al ordenamiento interno a través del Real Decreto 60/2011, de 21 de enero, sobre las normas de calidad ambiental en el ámbito de la política de aguas.

El estado químico de las aguas superficial se clasificará como bueno o como que no alcanza el bueno.

Por último, en cuanto a las masas de agua subterránea se refiere, al igual que para las aguas superficiales, la IPH detalla las cuestiones referidas a los programas de control y seguimiento, la clasificación y evaluación de su estado cuantitativo y químico y la presentación de los resultados obtenidos.

La clasificación del estado de las masas de agua subterráneas quedará determinada por el peor valor de su estado cuantitativo y de su estado químico.

Para la clasificación del estado cuantitativo se utilizará como indicador el nivel piezométrico, mientras que para la clasificación del estado químico se utilizarán indicadores basados en la concentración de contaminantes y en la conductividad.

Ambos estados se clasificarán como bueno o malo.

Finalmente, la IPH establece los requisitos para la representación cartográfica de los resultados obtenidos.

2.4 Real Decreto 817/2015 (RDSE)

El Real Decreto 817/2015 de 11 de septiembre, establece los criterios de seguimiento y evaluación del estado de las aguas superficiales y las normas de calidad ambiental. Con su aprobación se cubren las deficiencias de la Instrucción de Planificación Hidrológica.

En él se recogen:

- Los criterios básicos y homogéneos para el diseño y la implantación de los programas de seguimiento del estado de las masas de agua superficial y para el control adicional de las zonas protegidas.
- Las normas de calidad ambiental (NCA) para las sustancias prioritarias y para otros contaminantes con objeto de conseguir un buen estado químico de las aguas superficiales. Establecer las NCA para las sustancias preferentes y fijar el procedimiento para calcular las NCA de los contaminantes específicos con objeto de conseguir un buen estado ecológico de las aguas superficiales o un buen potencial ecológico de dichas aguas, cuando proceda.
- Las condiciones de referencia y los límites de clases de estado de los indicadores de los elementos de calidad biológicos, fisicoquímicos e hidromorfológicos para clasificar el estado o potencial ecológico de las masas de agua superficial.
- Las disposiciones mínimas para el intercambio de información sobre estado y calidad de las aguas entre la Administración General del Estado y las administraciones con competencias en materia de aguas, en aras del cumplimiento de legislación que regula los derechos de acceso a la información y de participación pública.

La clasificación del estado de las masas de agua superficial quedará determinada por el peor valor de su estado ecológico y de su estado químico.

El estado ecológico podrá ser clasificado como muy bueno, bueno, moderado, deficiente o malo dependiendo de los indicadores biológicos y físico químicos establecidos en el anexo II, así como del cumplimiento de las NCA para contaminantes específicos o sustancias preferentes recogidas en el anexo V.

El potencial ecológico, en las masas de agua muy modificadas o artificiales, se clasificará como bueno o superior, moderado, deficiente o malo en función de los valores de los indicadores de calidad establecidos en el anexo II C y F, así como las NCA para contaminantes específicos o en su caso, las NCA recogidas en el anexo V para sustancias preferentes.

Cuando la masa de agua no se identifica con las tipologías descritas en estos apartados, se aplica los valores de los indicadores de calidad del Anexo II que corresponda a la tipología de la masa de agua natural que más se parezca a la masa de agua muy modificada o artificial.

Tanto en masas de agua naturales como muy modificadas o artificiales, el estado químico se clasificará como bueno o no alcanza el buen estado, según el cumplimiento de las NCA de las sustancias incluidas en el anexo IV.

La evaluación del estado de la masa de agua, llevará asociado un nivel de confianza que se calculará conforme a los criterios especificados en el anexo III B.

2.5 Instrucción del Secretario de Estado de Medio Ambiente (SEMA 14-10-2020)

Con fecha de 14 de octubre de 2020, el SEMA emitió la Instrucción por la que se establecen los requisitos mínimos para la evaluación del estado de las masas de agua en el tercer ciclo de la planificación hidrológica. Concretamente, mediante esta Instrucción se aprueban los criterios adicionales a los ya establecidos en el RDSE, a través de dos guías: una es la 'Guía para la evaluación del estado de las aguas superficiales y subterráneas'; y otra es la 'Guía del proceso de identificación y designación de las masas de agua muy modificadas y artificiales categoría río'.

La Guía para la evaluación del estado de las aguas superficiales y subterráneas es un documento complementario al marco normativo establecido, que intenta solventar las dificultades actualmente observadas que dan lugar a la aparición de heterogeneidades y significativas deficiencias en la aplicación de los criterios vigentes.

Tiene como objetivo servir de referencia a los Organismos de cuenca para configurar los programas de seguimiento y evaluar los estados de las masas de agua, de cara a su reflejo en la revisión de los planes hidrológicos de cuenca, de forma que sirva de base para definir las estaciones de medida que van a ser usadas en el diagnóstico del estado, las metodologías para el diagnóstico y el almacenamiento de información asociada y el horizonte de trabajo en los próximos años.

2.6 Protocolo de caracterización hidromorfológica y protocolo para el cálculo de métricas de los indicadores hidromorfológicos de las masas de agua categoría río

El 22 de abril de 2019 se dicta la Instrucción del Secretario de Estado de Medio Ambiente, por la que se aprueban la revisión del "Protocolo de caracterización hidromorfológica de masas de agua de la categoría ríos" y el nuevo "Protocolo para el cálculo de métricas de los indicadores hidromorfológicos de las masas de agua categoría río".

Estos protocolos permiten la obtención de las variables hidromorfológicas necesarias para la caracterización hidromorfológica de las masas de agua de la categoría ríos, comprendiendo los siguientes apartados de estudio y caracterización:

- régimen hidrológico
- continuidad del río
- condiciones morfológicas

La aplicación del este protocolo (tanto de gabinete como de campo) en ciertas masas de agua lineales de naturaleza muy modificada de la cuenca del Tajo ha permitido complementar la evaluación del estado con los resultados obtenidos para los indicadores indirectos de hábitat (IIdeH), mejorando así el nivel de confianza.

En todas las masas de agua superficial de geometría lineal designadas en la cuenca del Tajo se han determinado los ICAHs (Indicadores de caracterización de las fuentes de alteración hidrológica) definidos en este protocolo, en función de la temporalidad de las mismas. Dicha información ha sido empleada en la evaluación del riesgo de las masas de agua como indicador del impacto asociado a las presiones por alteración del régimen hidrológico. En el anejo 7 se describe con mayor detalle el procedimiento seguido en la evaluación del riesgo.

3. Metodología para la evaluación del estado

A continuación, se desarrolla la metodología establecida para la evaluación del estado de las masas de aguas superficiales y subterráneas.

3.1 Evaluación del estado de las masas de agua superficial

El estado de las masas de agua superficial se clasifica a partir de los valores de su estado ecológico y de su estado químico. El estado ecológico se define como una expresión de la calidad de la estructura y el funcionamiento de los ecosistemas acuáticos asociados a las aguas superficiales, y se clasifica empleando una serie de indicadores biológicos, hidromorfológicos y fisicoquímicos específicos de la categoría de masa de agua superficial de que se trate. El estado químico viene determinado por el cumplimiento de las normas de calidad medioambiental.

En lo que respecta a las masas de agua artificiales o muy modificadas, el estado se clasifica a partir de los valores de su potencial ecológico y de su estado químico. Al igual que el estado ecológico, el potencial ecológico se define como una expresión de la calidad del ecosistema, con la salvedad de que en dicho concepto se incorporan las limitaciones propias de las condiciones físicas resultantes de las características artificiales o muy modificadas de la masa de agua.

El estado final de una masa de agua superficial viene determinado por el peor valor de su estado o potencial ecológico y de su estado químico. Cuando ambos estados son al menos buenos, el estado de la masa de agua superficial se evalúa como *bueno o mejor*. En cualquier otra combinación, el estado se evalúa como *peor que bueno*. La consecución del buen estado en las masas de agua superficial requiere, por tanto, alcanzar al menos un buen estado o potencial ecológico y un buen estado químico.

3.1.1 Estado/Potencial ecológico

Para la evaluación del estado o potencial ecológico de las masas de agua superficial, se emplean diferentes metodologías en función de la categoría de masa de que se trate.

En los siguientes subapartados se describe el procedimiento empleado en la evaluación del estado de los siguientes grupos de masas de agua:

- En primer lugar, se describe el procedimiento empleado para las masas de agua río, tanto naturales como artificiales o muy modificadas,
- A continuación, se describe la determinación del potencial ecológico de los <u>embalses.</u>
- Por último, se detalla el procedimiento utilizado para la determinación del estado ecológico de los <u>lagos.</u>

El diagnóstico final del estado o potencial ecológico de las masas de agua superficial deberá ajustarse a la siguiente clasificación:

Clasificación del estado ecológico	Clasificación del potencial ecológico		
Muy bueno	Bueno o superior		
Bueno			
Moderado	Moderado		

Clasificación del estado ecológico	Clasificación del potencial ecológico		
Deficiente	Deficiente		
Malo	Malo		

Tabla 1. Clasificación del estado ecológico o potencial ecológico.

La serie de datos utilizada para la evaluación del estado ecológico de las masas de agua superficial en este tercer ciclo de planificación comprende el periodo 2015 – 2019 (y en algunos casos, datos correspondientes al 2020). En este nuevo plan de cuenca se han delimitado y designado nuevas masas de agua superficial con respecto al ciclo anterior, pasando de 323 a 512 masas.

Todas las masas de agua del tercer ciclo de planificación han sido evaluadas, si bien, en ciertas masas de agua ha sido necesario evaluar su estado mediante extrapolación, derivación de los resultados del análisis de presiones e impactos, o criterio de experto.

Se han puesto en marcha nuevos puntos para controlar determinadas masas de agua nuevas. En estos casos la evaluación se ha basado en los resultados obtenidos para los indicadores fisicoquímicos generales, contando con un periodo muy reducido de datos disponibles, y conllevando, por tanto, un nivel de confianza bajo.

A esta situación hay que añadir que en el Plan de cuenca del segundo ciclo la evaluación del estado fue realizada siguiendo los criterios establecidos por la IPH.

En septiembre de 2015 entró en vigor el RD 817/2015 (RDSE), estableciendo los nuevos criterios que se debían considerar en la evaluación del estado de las masas de agua superficial.

Finalmente, en octubre de 2020 se ha publicado la Guía para la Evaluación del estado de las masas de agua superficial y subterránea, que incluye criterios adicionales a los ya establecidos en el RDSE, intentando de este modo solventar las dificultades actualmente observadas que dan lugar a la aparición de heterogeneidades y significativas deficiencias en la aplicación de los criterios vigentes.

En la evaluación del estado de las masas de agua del tercer ciclo se han aplicado los criterios requeridos en el RD 817/2015, y se han tenido en cuenta ciertos aspectos contemplados en la Guía elaborada por el MITECO.

Por ello, para llevar a cabo el análisis de la evaluación del estado entre el anterior ciclo de planificación y el actual, ha sido necesario reevaluar el estado de las masas de agua del segundo ciclo aplicando los mismos criterios que los considerados en este nuevo ciclo, con el objeto de conseguir que los resultados asociados a cada ciclo sean comparables entre sí, y que el análisis sea más objetivo.

3.1.1.1 Ríos

Para la determinación del estado o potencial ecológico de las masas de agua de categoría río de la Demarcación Hidrográfica del Tajo, se ha partido de los datos de las campañas 2015, 2016, 2017, 2018 y 2019 (y en algunos casos, datos correspondientes al 2020).

Los criterios de evaluación del estado o potencial ecológico de estas masas considerados en la Demarcación Hidrográfica del Tajo se basan en la valoración conjunta de indicadores biológicos, fisicoquímicos e hidromorfológicos.

Tal y como establece la DMA, la evaluación del estado viene determinada por la comparación de los valores de los diferentes indicadores registrados en las masas de agua, con los valores de los indicadores en condiciones inalteradas (condiciones de referencia).

Para el cálculo del estado se sigue el esquema incluido en el Anexo III apartado B del RD 817/2015.

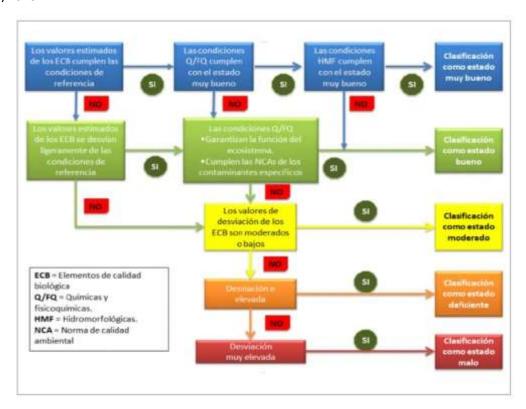


Figura 1. Esquema de valoración del estado ecológico

Según las directrices de la DMA, el proceso de evaluación comienza tomando en consideración los elementos de calidad biológicos.

Para cada masa, los indicadores biológicos (IBMWP e IPS) se clasifican en 5 categorías: muy bueno, bueno, moderado, deficiente o malo, debiendo prevalecer la peor entre las resultantes. Para las masas de agua artificiales o muy modificadas, el indicador biológico se clasifica como bueno o superior, moderado, deficiente o malo.

A continuación, se toman en consideración los elementos de calidad fisicoquímicos. Los parámetros utilizados se clasifican en 3 categorías: muy bueno, bueno o moderado, siguiendo el esquema anterior de prevalencia del peor resultado obtenido.

Finalmente, se considera el elemento de calidad hidromorfológico. Para cada masa tanto natural como muy modificada, el indicador QBR se clasifica en 2 categorías muy bueno y peor que muy bueno, prevaleciendo la peor resultante.

El diagnóstico final del estado o potencial ecológico para cada masa de agua se corresponde con la peor categoría de las asignadas para cada uno de los indicadores evaluados.

En la siguiente tabla se recogen los elementos de calidad y los posibles indicadores para evaluar el estado en ríos, identificando aquellos que las redes de control de calidad en la Confederación Hidrográfica del Tajo muestrean:

Ríos				
Elementos de Calidad Biológicos	Indicadores Biológicos			
	IBMWP (Iberian Biomonitoring Working Party)			
	IMMi-T (Índce multimétrico ibérico mediterráneo)*			
Invertebrados bentónicos	METI (Indice multimétrico específico del tipo de			
invertebrados bentonicos	invertebrados bentónicos)*			
	MBi, MBf (Índice multimétrico de invertebrados vasco)*			
Diatomeas	IPS (Índice de Polusensibilidad Específica)			
Macrófitos	IBMR (Índice Biológico de Macrófitos en Ríos) *			
Peces	EFI+ Integrado**			
Elementos de Calidad Fisicoquímicos	Indicadores Fisicoquímicos			
Condiciones de Oxigenación	Oxígeno disuelto			
Condiciones de Oxigenación	% Saturación de oxígeno			
Estado de acidificación	рН			
	Nitratos			
Nutrientes	Amonio			
	Fosfatos			
Contaminantes específicos vertidos en cantidades	Anexo V RD 817/15			
significativas	Sustancias incluidas en la Lista de observación (AMPA y			
Significativas	Glifosato)***			
Elementos de Calidad Hidromorfológicos	Indicadores Hidromorfológicos			
Estructura del bosque de ribera	QBR (Índice de Calidad del Bosque de Ribera)			
Métricas de hidromorfología fluvial	IIdeH (Indicadores Indirectos de hábitat)****			

Tabla 2. Elementos de calidad que se muestrean en las redes de control de la cuenca del Tajo

La evaluación del estado o potencial ecológico de una masa de agua viene determinada por la comparación de los valores de los diferentes indicadores registrados en la misma, con los valores de las condiciones de referencia del tipo al que pertenece la masa.

En la Demarcación Hidrográfica del Tajo se han considerado las condiciones de referencia y límites entre clases marcados por el Real Decreto 817/2015 en su Anexo II. En este anexo se incluyen las condiciones de referencia y los límites de clase de estado de cada uno de los

^(*) No se ha trabajado con todos los indicadores presentados en la legislación del RD 817/2015; se ha prescindido de los indicadores IMMi-T, METI, MBi, MBf e IBMR debido al elevado grado de incertidumbre de las condiciones de referencia.

^(**) Se han comenzado los muestreos de este elemento de calidad biológico en 2020 en 30 masas de agua. No se ha establecido para esta fase un procedimiento claro para la integración de los resultados del EFI+ integrado. Por este motivo, aunque se dispone de datos preliminares, de momento se decide darles un grado de confianza bajo y no emplearlos en la evaluación del estado.

^(***) En este nuevo ciclo se considerarán las NCA de las sustancias AMPA y Glifosato incluidas en el apéndice 3 de la normativa del Plan hidrológico.

^(****) Estos indicadores se aplicarán para complementar la evaluación biológica y mejorar el NCF de la evaluación.

indicadores de los elementos de calidad que permiten evaluar el estado o potencial ecológico de las masas de agua superficial.

Para definir las clases de estado, se calcula la desviación de los índices de calidad con respecto a las condiciones de referencia, obteniéndose como resultado el Cociente de Calidad Ecológica, EQR (*Ecological Quality Ratio*), mediante la siguiente fórmula:

$$EQR = \frac{V_{observado}}{V_{referencia}}; 0 \le EQR \le 1$$

Los valores cercanos a 1 indican un muy buen estado del indicador, mientras que los valores próximos a cero se corresponden con un mal estado.

Masas de agua superficial categoría río naturaleza natural

Considerando el Anexo II apartado A del Real Decreto 817/2015, las condiciones de referencia y los límites de clases de estado para las diferentes tipologías de masas en condiciones naturales presentes en la Demarcación Hidrográfica del Tajo son las siguientes:

Elemento	Indicador ¹	CR	Lim MB-B	Lim B-Mo	Lim Mo-D	Lim D-Ma
Tipo R-T01: Ríos de llanuras silíceas del Tajo y del Guadiana						
Organismos fitobentónicos	IPS	16	0,90	0,68	0,45	0,23
Invertebrados bentónicos	IBMWP	124	0,88	0,53	0,31	0,13
Condiciones Morfológicas	QBR	80	0,0125			
Candisianos da aviganación	Oxígeno disuelto (mg/l)			5		
Condiciones de oxigenación	% Oxígeno		70-100	60-120		
Estado acidificación	рН		6-8,4	5,5-9		
	Amonio (mg/l)		0,3	1		
Nutrientes	Fosfatos (mg/l)		0,2	0,4		
	Nitratos (mg/l)		10	25		
	Tipo R-T05: Ríos ma	nchegos				
Organismos fitobentónicos	IPS	15,9	0,92	0,69	0,46	0,23
Invertebrados bentónicos	IBMWP	123	0,89	0,54	0,32	0,13
Condiciones Morfológicas	QBR	58	0,862			
Candisianas da avisanasión	Oxígeno (mg/l)			5		
Condiciones de oxigenación	% O2 Sat.		70-100	60-120		
Estado acidificación	рН		6,5-8,7	6-9		
	Amonio (mg/l)		0,2	0,6		
Nutrientes	Fosfatos (mg/l)		0,2	0,4		
	Nitratos (mg/l)		20	25		
Tip	o R-T08 : Ríos de baja montañ	a mediter	ránea silícea	'		
Organismos fitobentónicos	IPS	15,1	0,83	0,62	0,42	0,21
Invertebrados bentónicos	IBMWP	159	0,62	0,38	0,22	0,09
Condiciones Morfológicas	QBR	95	0,736			
Condition of description of the	Oxígeno (mg/l)			5		
Condiciones de oxigenación	% O2 Sat.		70-100	60-120		
Estado acidificación	рН		6,5-8,7	6-9		
	Amonio (mg/l)		0,2	0,6		
Nutrientes	Fosfatos (mg/l)		0,2	0,4		
	Nitratos (mg/l)		10	25		

Elemento	Indicador ¹	CR	Lim	Lim	Lim	Lim
Elemento	Illuicauoi	CN	MB-B	B-Mo	Mo-D	D-Ma
Т	ipo R-T11: Ríos de montaña	mediterrár	iea silícea			
Organismos fitobentónicos	IPS	18,5	0,94	0,71	0,47	0,24
Invertebrados bentónicos	IBMWP	193	0,82	0,50	0,30	0,12
Condiciones Morfológicas	QBR	90	0,888			
	Oxígeno (mg/l)			5		
Condiciones de oxigenación	% O2 Sat.		70-100	60-120		
Estado acidificación	рН		6,5-8,7	6-9		
	Amonio (mg/l)		0,2	0,6		
Nutrientes	Fosfatos (mg/l)		0,2	0,4		
	Nitratos (mg/l)		10	25		
Tip	oo R-T12: Ríos de montaña n	nediterráne	ea calcárea			
Organismos fitobentónicos	IPS	18	0,91	0,68	0,46	0,23
Invertebrados bentónicos	IBMWP	186	0,82	0,50	0,30	0,12
Condiciones Morfológicas	QBR	88	0,795			
	Oxígeno (mg/l)			5		
Condiciones de oxigenación	% O2 Sat.		70-100	60-120		
Estado acidificación	рН		6,5-8,7	6-9		
	Amonio (mg/l)		0,2	0,6		
Nutrientes	Fosfatos (mg/l)		0,2	0,4		
	Nitratos (mg/l)		10	25		
Ti	po R-T13: Ríos mediterránec	s muy min	eralizados			
Organismos fitobentónicos	IPS	17,7	1,00	0,75	0,50	0,25
Invertebrados bentónicos	IBMWP	89	0,93	0,57	0,34	0,15
Condiciones Morfológicas	QBR	60	0,833	<u> </u>	,	,
	Oxígeno (mg/l)		, , , , , , , , , , , , , , , , , , ,	5		
Condiciones de oxigenación	% O2 Sat.		70-100	60-120		
Estado acidificación	рН		6,5-8,7	6-9		
	Amonio (mg/l)		0,2	0,6		
Nutrientes	Fosfatos (mg/l)		0,4	0,5		
	Nitratos (mg/l)		10	25		
Tipo R-T	15: Ejes mediterráneo-contir	entales po	co mineralizad	OS		
Organismos fitobentónicos	IPS	17,7	0,98	0,73	0,49	0,24
Invertebrados bentónicos	IBMWP	172	0,69	0,42	0,24	0,10
Condiciones Morfológicas	QBR	100	0,800			
	Oxígeno (mg/l)			5		
Condiciones de oxigenación	% O2 Sat.		70-100	60-120		
Estado acidificación	рН		6,5-8,7	6-9		
	Amonio (mg/l)		0,2	0,6		
Nutrientes	Fosfatos (mg/l)		0,4	0,5		
	Nitratos (mg/l)		10	25		
Tipo R	R-T16: Ejes mediterráneo-cor	ntinentales		<u>'</u>		
Organismos fitobentónicos	IPS	16,4	0,97	0,73	0,49	0,24
Invertebrados bentónicos	IBMWP	136	0,86	0,52	0,31	0,13
Condiciones Morfológicas	QBR	85	0,857	<u> </u>		
	Oxígeno (mg/l)			5		
Condiciones de oxigenación	% O2 Sat.		70-100	60-120		
Estado acidificación	рН		6,5-8,7	6-9		
	Amonio (mg/l)		0,2	0,6		
Nutrientes	Fosfatos (mg/l)		0,2	0,4		
		1	-, -	-, -	<u> </u>	l .

Elemento	Indicador ¹	CR	Lim MB-B	Lim B-Mo	Lim Mo-D	Lim D-Ma
	Nitratos (mg/l)		10	25		
Tij	oo R-T17: Grandes ejes en am	nbiente me	diterráneo			
Organismos fitobentónicos	IPS	12,9	0,90	0,67	0,45	0,22
Invertebrados bentónicos	IBMWP	107	0,79	0,48	0,28	0,15
Condiciones Morfológicas	QBR	80	0,875			
Condiciones de evigenación	Oxígeno (mg/l)			5		
Condiciones de oxigenación	% O2 Sat.		70-100	60-120		
Estado acidificación	рН		6,5-8,7	6-9		
	Amonio (mg/l)		0,3	1		
Nutrientes	Fosfatos (mg/l)		0,2	0,4		
	Nitratos (mg/l)		10	25		
	Tipo R-T24 : Gargantas d	e Gredos-E	Béjar			
Organismos fitobentónicos	IPS	15,9	0,91	0,68	0,45	0,23
Invertebrados bentónicos	IBMWP	207	0,90	0,55	0,32	0,14
Condiciones Morfológicas	QBR	70	0,857			
Condiciones de avigenación	Oxígeno (mg/l)			5		
Condiciones de oxigenación	% O2 Sat.		70-100	60-120		
Estado acidificación	рН		6-8,4	5,5-9		
	Amonio (mg/l)		0,2	0,6		
Nutrientes	Fosfatos (mg/l)		0,2	0,4		
	Nitratos (mg/l)		10	25		

Tabla 3. Condiciones de referencia y los límites de clases de estado para las diferentes tipologías de masas en condiciones naturales presentes en la Demarcación Hidrográfica del Tajo

CR: condición de referencia. MB: muy bueno. B: bueno. Mo: moderado. D: deficiente. Ma: malo.

(¹) Para los indicadores biológicos e hidromorfológicos, los límites de cambio de clase se establecen mediante el EQR.

Las masas de agua de categoría río naturales, se evaluarán según el Anexo II del RD 817/2015 con los siguientes criterios adoptados:

 Los elementos de calidad biológicos IBMWP e IPS se evalúan siguiendo los límites de cambio de clase (LCC) para cada tipología recogidos en la Tabla 3. Si el valor del indicador es exactamente igual al LCC, es posible asignarle a la masa el estado superior, pero en este caso el nivel de confianza será más bajo. La clasificación del estado de estos elementos de calidad es: Muy bueno, bueno, moderado, deficiente y malo.

Para la evaluación del ciclo, se ha considerado la evaluación global de los dos indicadores diferenciando tres situaciones para la evolución del ciclo:

1. Si todos los años mantiene la misma calidad biológica, se considera que los datos son homogéneos y se calcula la mediana de los datos de todos los años contemplados en la agregación.

- Si los resultados son variables año a año, es decir, los datos se consideran dispares, se calcula la mediana de los datos de todos los años contemplados en la agregación.
- 3. Si para los dos últimos años se obtiene la misma evaluación y ésta es diferente a la de los años anteriores (mejor o peor) se calcula el promedio de esos dos últimos años.

Respecto al elemento biológico relativo a la fauna piscícola, en este ciclo de planificación se incorpora el EFI+ integrado como indicador de calidad biológico sensible a las presiones hidromorfológicas que sufren las masas de agua, al no contar aún con un índice nacional aplicable a todos los tipos, y hasta que se disponga de condiciones de referencia para el índice EFI+ (índice que funciona en toda España con distinto grado de ajuste según el territorio o el grado de detalle de las presiones a analizar). El índice EFI+integrado, es un índice resultante de la combinación de las métricas del índice de fauna piscícola EFI+ (índice new European Fish Index) y de los Indicadores indirectos de hábitat específicos para la fauna piscícola (IIdeH-FP).

Se han comenzado los muestreos de este elemento de calidad biológico en 2020 en determinadas masas de agua. Dado que no se ha establecido para esta fase un procedimiento claro para la integración de los resultados del EFI+ integrado, aunque se dispone de datos preliminares, de momento se decide darles un grado de confianza bajo y no emplearlos en la evaluación del estado.

 Los elementos de calidad fisicoquímicos generales (Oxígeno disuelto, % de saturación de oxígeno, pH, Amonio, Nitratos y Fosfatos) se evalúan siguiendo el Anexo II del RD 817/2015.

Al igual que ocurre con los elementos de calidad biológica, si el valor del indicador es exactamente igual al LCC, es posible asignarle el estado superior, aunque en estos casos el nivel de confianza será menor. Por otro lado, cuando el valor del indicador es inferior al límite de cuantificación (LQ), se le asigna como valor el LQ/2. En caso de que el promedio anual presente varios decimales, el redondeo se hará hasta las cifras significativas de la norma.

En la evaluación anual del estado se emplean los promedios anuales y para la agregación de datos de todo el periodo las medianas de los promedios anuales.

La clasificación del estado de estos elementos de calidad es: Muy bueno, bueno y moderado.

La evaluación de los indicadores fisicoquímicos a nivel de ciclo, comparte criterios similares a la evaluación biológica:

- 1. Para la evaluación del ciclo, se ha considerado la evaluación global de los indicadores fisicoquímicos.
- 2. Si todos los años mantiene la misma calidad fisicoquímica, se considera que los datos son homogéneos y se calcula de la mediana de los promedios anuales contemplados en la agregación.

- 3. Si los resultados son variables año a año, es decir, los datos se consideran dispares, se calcula la mediana de los promedios anuales de los años contemplados en la agregación.
- 4. Si para los dos últimos años se obtiene la misma evaluación y ésta es diferente a la de los años anteriores (mejor o peor) se calcula el promedio de esos dos últimos años.

• Sustancias preferentes

Para clasificar el estado ecológico de las masas de agua superficial del tercer ciclo de planificación también se ha tenido en cuenta el cumplimiento de las NCA incluidas en el Anexo V del RD 817/2015 respecto a las sustancias preferentes.

La superación de la NCA establecida en el Anexo V, implicará que el estado fisicoquímico de la masa de agua pase a moderado.

El valor calculado para el ciclo dependerá del cálculo de r² de datos desagregados:

- Si los datos desagregados de cada uno de los contaminantes se ajustan a una recta regresión con un coeficiente de determinación r² ≥ 0,8 se utilizará la media del último año.
- Si los datos desagregados de cada uno de los contaminantes se ajustan a una recta regresión con un coeficiente de determinación r² < 0,8:
 - Si las medias anuales no presentan incumplimientos salvo los dos últimos años, que incumplen, se realizará la media de las medias de los dos últimos años contemplados en la agregación.
 - o En el resto de los casos, se realizará la media de las medias anuales.

Propuesta de contaminantes específicos de la cuenca

La Guía de evaluación del estado incluye un listado de sustancias que pueden entrañar riesgo en las aguas españolas que corresponde a las sustancias candidatas a formar parte del listado de sustancias preferentes regulado en el anexo V del RDSE donde se propone una norma de calidad ambiental (NCA) para cada sustancia como un valor guía, no imperativo, que puede aplicarse a la evaluación del estado o potencial ecológico.

En este nuevo ciclo se consideraron las sustancias AMPA y Glifosato candidatas a formar parte del listado de contaminantes específicos de la cuenca, con base al seguimiento realizado por el Área de Calidad de la CHT.

Las NCA propuestas para el control de estas sustancias son las siguientes:

N.º CAS	Nombre de la sustancia	NCA-MA (μg/L)
1066-51-9	АМРА	1,6
1071-83-6	Glifosato	0,1

Tabla 4. NCA de los contaminantes específicos de cuenca propuestos

La aprobación del plan del tercer ciclo conlleva la aplicación de estas NCA (incluidas en el apéndice 3 de la normativa del Plan hidrológico) en la evaluación del estado de las masas de agua del tercer ciclo.

 El elemento de calidad hidromorfológico considerado en la evaluación de las masas lineales naturales ha sido el índice de calidad del bosque de ribera (QBR). La clasificación del elemento de calidad hidromorfológico es: Muy bueno o Peor que muy bueno según el LCC establecido para cada ecotipo.

Masas de agua superficial de categoría río naturaleza muy modificada

Según el RD 817/2015, para la evaluación del potencial ecológico de estas masas de agua muy modificadas, se aplicarán los indicadores de los elementos de calidad correspondientes a la categoría o tipo de masa natural a la que más se parezca la masa de agua muy modificada o artificial. La clasificación del potencial ecológico en estos casos será: bueno o superior, moderado deficiente y malo.

Los criterios establecidos para la evaluación del potencial ecológico en las masas de agua muy modificadas son los siguientes:

Para cada masa de agua lineal de naturaleza muy modificada, se han identificado los indicadores biológicos más sensibles en función de la alteración hidromorfológica que conlleva dicha naturaleza, considerando para su evaluación los criterios de la librería de medidas de mitigación europea y de la guía elaborada por el MITECO de identificación y designación de las masas de agua muy modificadas y artificiales categoría río.

Se ha considerado que el indicador biológico más sensible al efecto de las presiones por generación de energía hidroeléctrica y alteraciones físicas lineales son los invertebrados bentónicos. Por ello, en aquellas masas de agua lineales cuya naturaleza como muy modificada se debe a canalizaciones, modificaciones o rectificaciones del curso natural del cauce, y en aquellas masas que se encuentran inmediatamente aguas abajo de masas poligonales cuyo uso principal es el hidroeléctrico, se ha tomado como punto de partida los límites de clases de estado del indicador IBMWP establecidos para las masas naturales, identificando el límite entre el potencial máximo y bueno con el que delimitaba la frontera entre el estado bueno y moderado de las masas naturales.

Para el resto de elementos de calidad biológicos muestreados en la masa de agua se emplean los límites entre clases del ecotipo de la masa de agua natural a la que más se parezca la masa de agua muy modificada.

Se ha considerado que los macrófitos son el indicador biológico más sensible a los cambios de flujo aguas abajo de embalses, y los peces el más sensible a la interrupción en la continuidad del río. Ninguno de estos indicadores biológicos se ha empleado en la evaluación del potencial ecológico de las masas de agua lineales de la cuenca del Tajo, el primero de ellos por su bajo nivel de confianza, y el segundo por disponer de escasos datos aún en fase de revisión (no se ha establecido para esta fase un

procedimiento claro para la integración de los resultados del EFI+ integrado. Por este motivo, aunque se dispone de datos preliminares, de momento se decide darles un grado de confianza bajo y no emplearlos en la evaluación del estado).

- Los indicadores fisicoquímicos se han evaluado como si se tratara de una masa de agua natural.
- En dos de las masas de agua lineales de naturaleza muy modificada (Arroyo de los Prados y Arroyo de la Zarzuela) ha sido necesario evaluar su potencial mediante derivación de los resultados del análisis de presiones-impactos-riesgo, y mediante criterio de experto, al encontrase el cauce seco en el momento de los muestreos.
- Para mejorar el nivel de confianza de la evaluación de estado, la Guía aprobada mediante Instrucción del SEMA del 14 de octubre de 2020 propone incorporar nuevos indicadores a los elementos de calidad establecidos en el RDSE, como son los indicadores indirectos de hábitat (IIdeH), combinando de este modo los indicadores biológicos con los indicadores hidromorfológicos abióticos, y mejorando así la fiabilidad de los resultados obtenidos en la evaluación del potencial ecológico en masas muy modificadas no asimilables a lagos en las que la clasificación del estado según los elementos de calidad biológicos se ha llevado a cabo por aproximación, o en aquellas en las que es se pretende mejorar el nivel de confianza de su clasificación.

Se entienden por IIdeH como la expresión de los parámetros abióticos que dan sustento a los elementos de calidad biológicos. Se obtienen a partir de la caracterización hidromorfológica y permiten inferir el estado biológico a través de su "soporte" hidromorfológico.

Se ha llevado a cabo la caracterización hidromorfológica de todos los elementos en 23 masas de agua muy modificadas de la cuenca.

Los elementos considerados son:

- o RH: Caudal e Hidrodinámica
- o RH: Conexión con MSBT y grado de alteración de la misma
- o CM: Variación de la profundidad y anchura
- CM: Estructura y sustrato del lecho
- o CM: Estructura de la zona ribereña
- o CR: Continuidad del río

Por ello, en las masas de agua en las que se ha aplicado el protocolo de hidromorfología ha sido posible complementar la evaluación del estado (Evaluación Tipo I), con los resultados obtenidos para los indicadores indirectos de hábitat (IIdeH), mejorando así el nivel de confianza de la evaluación de ciertas masas de agua de la cuenca. Se ha tenido en cuenta el peor valor de los obtenidos en los 6 elementos analizados.

	EVALUACIÓN DEL POTEN	CIAL ECOLÓGICO UTILIZANDO IIdeH	
NCF de los datos IIdeH	RESULTADO DE LA EVALUACIÓN DEL POTENCIAL ECOLÓGICO	EVALUACIÓN DEL POTENCIAL ECOLÓGICO. CRITERIOS DE EVALUACIÓN	NCF DE LA EVALUACIÓN
	La evaluación del potencial usando los IldeH es menor o igual al resultado obtenido con la Evaluación tipo I	La evaluación del potencial ecológico está definida en función <i>de los IIdeH</i> (evaluación tipo II)	El NCF será el de los IldeH
ALTO O MEDIO	La evaluación del potencial usando los IldeH es mejor al resultado obtenido con la evaluación tipo I, en este caso: Revisar periodo temporal de los datos de los EC y de los IldeH Revisar si ha habido intervenciones para la mejora de la dinámica fluvial	La evaluación del potencial ecológico está definida según criterio de experto (evaluación tipo I o tipo II) y se apoyará en el estudio de presiones	El NCF de la evaluación será el del (NCF de los datos de los EC si se usa la evaluación tipo I y NCF de los IldeH si se trata de evaluación tipo II)
	La evaluación del potencial usando los IIdeH es igual al resultado de la evaluación tipo I y coherente con el estudio de presiones	La evaluación del potencial ecológico es la de tipo I y tipo II	El NCF Medio
BAJO	La evaluación del estado tipo II es diferente (mejor o peor al resultado de la evaluación tipo I)	La evaluación del potencial ecológico está definida según criterio de experto (tipo I o tipo II) y se apoyará en el estudio de presiones	El NCF Bajo

Tabla 5. Criterios de evaluación del potencial ecológico con indicadores indirectos de hábitat

- La preparación de los datos y su tratamiento para la valoración a nivel de ciclo seguirá los mismos criterios que los expuestos en el caso de las masas de agua naturales.
- En la evaluación del potencial ecológico de la masa de agua lineal artificial (Canal de Castrejón) se han considerado los indicadores fisicoquímicos y los límites de clase asociados al tipo de masa de agua natural más similar a la misma. No se han considerado los indicadores biológicos e hidromorfológicos propios de una masa de agua natural, al tratarse de un canal artificial con las orillas protegidas y revestidas con obras de fábrica.

3.1.1.2 Embalses

Para la determinación del potencial ecológico de los embalses de la Demarcación Hidrográfica del Tajo, se ha partido de los datos obtenidos de las campañas 2015, 2016, 2017, 2018 y 2019, calculando la mediana para la evaluación a nivel de ciclo.

Para ello, las redes de control de calidad han muestreado los siguientes indicadores biológicos de calidad definidos en el Anexo II apartado C del RD 817/2015 (RDSE):

Embalses						
Elemento	Parámetro	Indicador				
	Abundancia	Clorofila a				
Fitoplancton	Biomasa	Biovolumen				
ritopiancton	Composición	IGA (Índice de Grupos Algales)				
	Composition	Porcentaje de Cianobacterias				

Tabla 6. Elementos de calidad en embalses en la cuenca del Tajo

Las condiciones de referencia y los límites de cambio de clase (LCC) vienen definidos Anexo II apartado C.2 del RDSE para todas las tipologías contempladas en la cuenca del Tajo.

A continuación, se resumen los valores utilizados como LCC para la evaluación del potencial ecológico de los embalses en la Demarcación Hidrográfica del Tajo:

INDICADOR	MÁXIMO	LÍMITES DE CAMBIO DE CLASE DE ESTADO RCE					
INDICADOR	POTENCIAL ECOLÓGICO	o superior/ moderado	Moderado/ deficiente	Deficiente/ malo			
E-T01: Monomíctico, silíceo de zonas húmedas, con temperatura media anual menor de 15ºC, pertenecientes a ríos							
de cabecera y tramos altos							
IGA	0,10	0,974	0,649	0,325			
% cianobacterias	0,00	0,908	0,607	0,303			
Clorofila a (mg/m3)	2,00	0,211	0,14	0,07			
Biovolumen (mm3/L)	0,36	0,189	0,126	0,063			
E-T02: Monomíctico, silíceo de zona		nperatura media anu a y tramos altos	al mayor de 15°C, pe	rtenecientes a ríos			
IGA	0,10	0,974	0,649	0,325			
% cianobacterias	0,00	0,908	0,607	0,303			
Clorofila a (mg/m3)	2,00	0,211	0,14	0,07			
Biovolumen (mm3/L)	0,36	0,189	0,126	0,063			
E-T03: Monomíctico, s	ilíceo de zonas húm	nedas, perteneciente	s a ríos de la red prin	icipal			
IGA	0,10	0,974	0,649	0,325			
% cianobacterias	0,00	0,908	0,607	0,303			
Clorofila a (mg/m3)	2,00	0,211	0,14	0,07			
Biovolumen (mm3/L)	0,36	0,189	0,126	0,063			
E-T04: Monomíctico, silíceo	de zonas no húmed	las, pertenecientes a	ríos de cabecera y tr	amos altos			
IGA	3,90	0,897	0,598	0,299			
% cianobacterias	0,40	0,647	0,431	0,216			
Clorofila a (mg/m3)	2,60	0,25	0,167	0,083			
Biovolumen (mm3/L)	0,77	0,248	0,165	0,083			
E-T05: Monomíctico, silí	ceo de zonas no hú	medas, pertenecient	es a ríos de la red pr	incipal			
IGA	3,90	0,897	0,598	0,299			
% cianobacterias	0,40	0,647	0,431	0,216			
Clorofila a (mg/m3)	2,60	0,25	0,167	0,083			
Biovolumen (mm3/L)	0,77	0,248	0,165	0,083			
E-T06: Monomíctico, silíceo de	zonas no húmedas	, pertenecientes a tra	amos bajos de los eje	es principales			
IGA	1,50	0,929	0,619	0,31			
% cianobacterias	0,10	0,686	0,457	0,229			
Clorofila a (mg/m3)	2,40	0,195	0,13	0,065			
Biovolumen (mm3/L)	0,63	0,175	0,117	0,058			
E-T07: Monomíctico, calcáreo de zonas húmedas, con temperatura media anual menor de 15ºC, pertenecientes a ríos de cabecera y tramos altos							
IGA	0,61	0,982	0,655	0,327			
% cianobacterias	0,00	0,715	0,48	0,24			
Clorofila a (mg/m3)	2,60	0,433	0,287	0,143			
Biovolumen (mm3/L)	0,76	0,362	0,24	0,12			
E-T10: Monomíctico, calcáreo	de zonas no húme	das, pertenecientes a	ríos de cabecera y t	tramos altos			
IGA	0,61	0,982	0,655	0,327			
% cianobacterias	0,00	0,715	0,48	0,24			

	AMBIO DE CLASE DE	DE CLASE DE ESTADO RCE		
INDICADOR	POTENCIAL ECOLÓGICO	Bueno o superior/ moderado	Moderado/ deficiente	Deficiente/ malo
Clorofila a (mg/m3)	2,60	0,433	0,287	0,143
Biovolumen (mm3/L)	0,76	0,362	0,24	0,12
E-T11: Monomíctico, calc	áreo de zonas no h	úmedas, pertenecier	ites a ríos de la red pi	rincipal
IGA	0,61	0,982	0,655	0,327
% cianobacterias	0,00	0,715	0,48	0,24
Clorofila a (mg/m3)	2,60	0,433	0,287	0,143
Biovolumen (mm3/L)	0,76	0,362	0,24	0,12
E-T12: Monomíctico, calcáreo	de zonas no húme	das, pertenecientes a	tramos bajos de ejes	principales
IGA	1,50	0,929	0,619	0,31
% cianobacterias	0,10	0,686	0,457	0,229
Clorofila a (mg/m3)	2,40	0,195	0,13	0,065
Biovolumen (mm3/L)	0,63	0,175	0,117	0,058

Tabla 7. Valores de referencia para la evaluación del potencial ecológico en los embalses de la cuenca del Tajo

El cálculo de RCE (EQR) se realiza aplicando el Protocolo de análisis y cálculo de métricas de fitoplancton en lagos y embalses publicado en noviembre de 2013 por el Ministerio de Agricultura, Alimentación y Medio ambiente. Con los resultados obtenidos para los diferentes indicadores, se ha calculado el EQR (*Ecological Quality Ratio*) como paso previo requerido en la valoración del potencial ecológico según el RDSE.

De forma general, el cálculo del EQR se realiza según la siguiente fórmula:

$$EQR = \frac{V_{observado}}{V_{referencia}}$$

No obstante, para la Clorofila a y el Biovolumen, dado que estas métricas se relacionan con la calidad de forma inversa, el cálculo del EQR se realiza según la siguiente fórmula:

$$EQR = \frac{V_{referencia}}{V_{observado}}$$

Para el Índice de Grupos Algales (IGA), el valor del EQR se calcula mediante la siguiente fórmula:

$$EQR = \frac{400 - V_{observado}}{400 - V_{vot avaria}}$$

En el caso de las cianobacterias, la fórmula empleada para el cálculo del EQR es la que se muestra a continuación:

$$EQR = \frac{100 - V_{observado}}{100 - V_{referencia}}$$

En este caso, el dato que se emplea en la valoración es el porcentaje en biovolumen de cianobacterias.

Una vez obtenidos los valores de EQR para los 4 indicadores, han de transformarse a una escala numérica equivalente, o EQR normalizado. Para ello:

- El EQR 0 se corresponde con el EQR normalizado 0.
- El EQR de cambio entre clases bueno y moderado, se corresponde con el EQR normalizado 0,6.
- El EQR 1 se corresponde con el EQR normalizado 1.

Para realizar la conversión, se utilizan las ecuaciones definidas en la siguiente tabla. Dado que los EQR deben ser valores comprendidos entre 0 y 1, y que en algunas circunstancias los cálculos pueden dar valores superiores a 1, todos los EQR que superen el valor de 1, bien antes o después de normalizarse, deben ser convertidos a 1.

Tipología	Indicador	Ecuaciones de cálculo		
	Clarafila a (ug/l)	Si EQR ≤ 0,21; Y = 2,8571X		
	Clorofila a (μg/l)	Si EQR > 0,21; Y = 0,5063X + 0,4937		
Forbalesselling	Diamateura an (12223/11)	Si EQR ≤ 0,19; Y = 3,1579X		
Embalses silíceos	Biovolumen (mm³/l)	Si EQR > 0,19; Y = 0,4938X + 0,5062		
Tipologías 1, 2 y 3	IGA	Si EQR ≤ 0,9737; Y = 0,6162X		
	IGA	Si EQR > 0,9737; Y = 15,234X - 14,233		
	% Cianobacterias	Si EQR ≤ 0,91; Y = 0,6593X		
	% Clariobacterias	Si EQR > 0,91; Y = 4,4444X - 3,4444		
	Clorofila a (µg/l)	Si EQR ≤ 0,25; Y = 2,4X		
	Cioronia a (µg/1)	Si EQR > 0,25; Y = 0,5333X + 0,4667		
	Piovolumon (mm ³ /l)	Si EQR ≤ 0,248; Y = 2,4234X		
Embalses silíceos	Biovolumen (mm³/l)	Si EQR > 0,248; Y = 0,5316X + 0,4684		
Tipologías 4 y 5	IGA	Si EQR ≤ 0,897; Y = 0,6687X		
Tipologius 4 y 5		Si EQR > 0,897; Y = 3,8929X – 2,8929		
		Si EQR ≤ 0,647; Y = 0,928X		
	% Cianobacterias	Si EQR > 0,647; Y = 1,1318X - 0,1318		
	Clarafila a (carli)	Si EQR ≤ 0,195; Y = 3,075X		
	Clorofila a (μg/l)	Si EQR > 0,195; Y = 0,497X + 0,503		
	Piovolumon (mm ³ /l)	Si EQR ≤ 0,175; Y = 3,419X		
Embalses	Biovolumen (mm³/l)	Si EQR > 0,175; Y = 0,4851X + 0,5149		
Tipologías 6 y 12	IGA	Si EQR ≤ 0,929; Y = 0,6459X		
	IGA	Si EQR > 0,929; Y = 5,6325X - 4,6325		
	% Cianobacterias	Si EQR ≤ 0,686; Y = 0,875X		
	% Clanobacterias	Si EQR > 0,686; Y = 1,2726X - 0,2726		
	Clarafila a /ug/I)	Si EQR ≤ 0,43; Y = 1,3953X		
	Clorofila a (µg/l)	Si EQR > 0,43; Y = 0,7018X + 0,2982		
Fuch along paleting a	Biovolumen (mm³/l)	Si EQR ≤ 0,36; Y = 1,6667X		
Embalses calcáreos	biovolumen (mm²/1)	Si EQR > 0,36; Y = 0,625X + 0,375		
Tipologías 7, 8, 9, 10, 11	IGA	Si EQR ≤ 0,9822; Y = 0,6108X		
	IGA	Si EQR > 0,9822; Y = 22,533X - 21,533		
	% Cianobacterias	Si EQR ≤ 0,72; Y = 0,8333X		
	/o Cidilonacterids	Si EQR > 0,72; Y = 1,4286X - 0,4286		

Tabla 8. Ecuaciones de conversión para el cálculo del EQR en las masas tipo embalse en la cuenca del Tajo

Las siguientes gráficas muestran las rectas obtenidas mediante la aplicación de las ecuaciones de normalización de los resultados del EQR para cada tipología de embalse e indicador biológico.

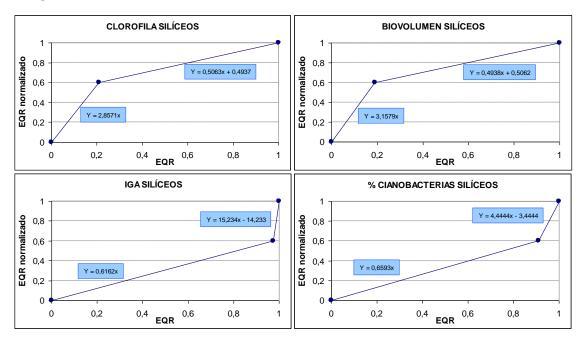


Figura 2. Gráficos con ecuaciones de normalización de EQR para tipologías 1, 3, 4, 5 y 6

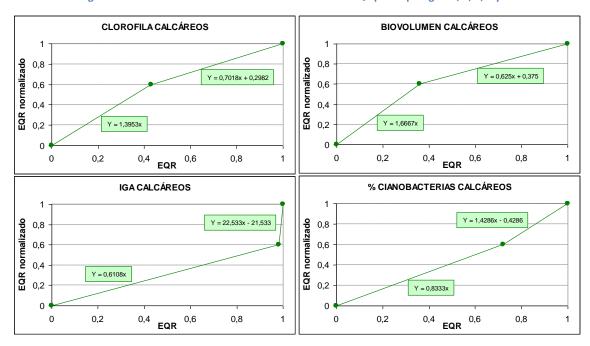


Figura 3. Gráficos con ecuaciones de normalización de EQR para tipologías 7, 8, 9, 10, 11 y 12.

Finalmente, el EQR normalizado correspondiente al conjunto de la masa se obtiene según el siguiente procedimiento:

• Se promedian los EQR normalizados de los indicadores de abundancia/biomasa fitoplanctónica (Clorofila a y Biovolumen).

- Se promedia los EQR normalizados de los indicadores de composición fitoplanctónica (IGA y Porcentaje en biovolumen de cianobacterias).
- Como resultado final, se promedian los dos valores obtenidos en las operaciones previas.

De este modo, la fórmula que se aplica para el cálculo del EQR normalizado promediado para cada muestra es la siguiente:

$$EQR_{NrEmbalse} = \left(\frac{EQR_{NrCla} + EQR_{NrBioV}}{2} + \frac{EQR_{NrIGA} + EQR_{Nr\%Ciano}}{2}\right) \frac{1}{2}$$

La siguiente tabla muestra los rangos que se emplean para asignar cada valor de EQR normalizado y promediado a una clase de calidad.

Potencial ecológico	Umbrales del EQR Normalizado Promedio
Bueno o superior	X ≥ 0,6
Moderado	0,4 ≤ X < 0,6
Deficiente	0,2 ≤ X < 0,4
Malo	X ≤ 0,2

Tabla 9. Escala de clasificación del potencial ecológico en embalses según los valores de los EQR normalizados promedio

La combinación de los valores de las métricas transformados se realizará utilizando la siguiente fórmula:

$$MASRP = \frac{RCEn (CLo) + RCEn (Bv)}{2} + \frac{RCEn (IGA) + RCEn (Cia\%)}{2}$$

Dicha ecuación será aplicable siempre y cuando se disponga de datos de al menos una de las métricas relativa a la biomasa y al menos una de las métricas relativa a la composición. El valor final de la combinación de los valores de las métricas transformados (MARSP) se utilizará para la clasificación del estado ecológico de acuerdo a la escala de clases de estado ecológico indicada en la tabla anterior.

Es posible llevar a cabo este procedimiento de evaluación del potencial ecológico cuando se disponen de datos relativos a los indicadores biológicos.

En este nuevo ciclo se han designado 95 nuevas masas de agua embalse. Al tratarse de nuevas masas de agua ha sido necesario evaluar su potencial mediante extrapolación, derivación de los resultados del análisis de presiones e impactos, o criterio de experto, conllevando que el nivel de confianza asociado a su evaluación sea bajo.

El 21 de enero de 2022 entró en vigor el Real Decreto Real Decreto 47/2022, de 18 de enero, sobre protección de las aguas contra la contaminación difusa producida por los nitratos procedentes de fuentes agrarias. Mediante el precitado Real Decreto, se añade al Real Decreto 817/2015 el artículo 8bis y un apartado D al anexo III sobre los criterios y especificaciones técnicas para el seguimiento y clasificación del estado de las aguas. Este nuevo apartado hace

referencia a la **caracterización del estado trófico** de las masas de agua. Esta caracterización sólo se realizará en las masas de agua continentales de categoría lago y en las muy modificadas asimilables a lagos.

El estado trófico de una masa de agua se clasificará como eutrófico, en riesgo de estar eutrófico y no eutrófico, aplicando para dicha clasificación en las masas de agua superficial continentales, al menos, los indicadores fósforo y clorofila a.

Para ello, se tendrán en cuenta los límites de cambio de clase de estado del anexo II del RD 817/2015, que establece para cada tipo de masa de agua de las categorías lago y muy modificadas asimilables a lago, así como en los criterios establecidos por la OCDE en la publicación *Eutrophication of waters: monitoring, assessment and control. OECD, 1982*.

Los criterios para la caracterización del estado trófico son los siguientes:

- 1. Las masas de agua en muy buen estado o buen estado ecológico se clasificarán, como norma general, en estado no eutrófico.
- 2. En el caso de que los límites de cambio no estén establecidos en el RD 817/2015 para estos indicadores, o bien que las masas de agua estén clasificadas en estado ecológico peor que bueno, serán de aplicación los criterios establecidos por la OCDE, y además se tendrán en cuenta los siguientes:
 - a) Los valores umbral que se utilizarán en la caracterización del estado trófico son los recogidos en la tabla siguiente; estos valores se considerarán como valores mínimos aplicables:

Potencial ecológico	Fósforo total (media anual)	Clorofila a (media anual)	Clorofila a (máximo anual)	Transparencia del disco de Secchi* (media anual)
Eutrofia	mg P/m ³	mg chl _a /m ³	mg chla/m³	m
Lutiona	> 35	> 8	> 25	< 2,0

^{*} La transparencia solo se utilizará como indicador de apoyo conforme a lo establecido en el apartado f).

Tabla 10. Umbrales para clasificar el estado trófico de las masas de agua continentales a partir de criterios OCDE

- b) La media anual y el valor máximo de los indicadores se calculan a partir de un mínimo de 6 muestras anuales. Se tomará, al menos, una muestra cada trimestre del año.
- c) La caracterización del estado de trófico se realizará, al menos, una vez cada cuatro años coincidiendo con periodo correspondiente al Informe cuatrienal previsto en el artículo 10 del Real Decreto sobre protección de las aguas contra la contaminación difusa producida por los nitratos procedentes de fuentes agrarias.
- d) Cuando la masa de agua se encuentre en un espacio protegido, la caracterización del estado trófico tendrá en cuenta los estudios pertinentes y diagnósticos de eutrofia realizados por los organismos e instituciones responsables de su gestión.
- e) Una masa de agua se clasifica como eutrófica si la media anual de fósforo total y la media anual de "clorofila a" superan el valor umbral que figura en la tabla del punto a).

- f) Si la media anual de fósforo total supera el valor umbral y la media anual de la "clorofila a" es menor al valor umbral pero existen valores superiores al máximo anual, la eutrofia se valorará a través de juicio de experto. A tal efecto, se tendrán en cuenta otros indicadores como la transparencia, así como la presencia de presiones significativas que puedan causar el aumento de nutrientes sobre la masa de agua.
- g) Una masa de agua está en riesgo de eutrofización si soporta presiones significativas que puedan causar el aumento de nutrientes aunque no se superen los valores umbral de la tabla del punto a).
- h) Una masa de agua se clasifica como no eutrófica cuando no soporta presiones significativas que puedan causar el aumento de nutrientes y no se superan los valores umbral de la tabla del punto a).
- 3. Una masa de agua se clasificará no eutrófica cuando las medias obtenidas a partir de los datos del periodo de control sean menores a los umbrales recogidos en la tabla anterior para el "fósforo total (media del periodo de control)" y "clorofila a (media del periodo de control)" y, además, no existan presiones significativas que puedan causar el aumento de nutrientes en la misma.

3.1.1.3 Lagos

Para la determinación del estado ecológico de los lagos de la cuenca del Tajo, se ha partido de los datos de las campañas 2015, 2016, 2017, 2018 y 2019.

El RD 817/2015 recoge en el Anexo II apartado B.2, los elementos de calidad con los correspondientes indicadores que se aplican en la evaluación del estado ecológico de las masas de agua naturales de categoría lago.

Lagos				
Elementos de Calidad Biológicos	Indicadores Biológicos			
Fitoplancton	Concentración de Clorofila a			
ritopiancton	Biovolumen de fitoplancton			
Otro tipo de flora acuática	Macrófitos			
Invertebrados bentónicos	Índice de Ibcael			
Elementos de Calidad Fisicoquímicos	Indicadores Fisicoquímicos			
Transparencia	Profundidad de visión del Disco de Secchi			
Estado de acidificación	рН			
Nutrientes	Fósforo total			

Tabla 11. Elementos de calidad muestreados en lagos de la cuenca del Tajo

De acuerdo con el RD 817/2015, es necesario comparar los resultados obtenidos con un valor de referencia que corresponda con las mejores condiciones posibles para el tipo de lago que se está estudiando. En el precitado apartado del Anexo II del RDSE se establecen las condiciones de referencia para los lagos según su tipología.

A continuación, se resumen las condiciones de referencia, así como los límites de clases de estado empleados correspondientes a cada una de las tipologías presentes en las masas de agua de categoría lago de la Demarcación Hidrográfica del Tajo:

INDICADOR	CONDICIÓN DE REFERENCIA/ CONDICIÓN		Indicadore	O DE CLASE DE ES s biológicos: RCE químicos: MEDIDA	
	ESPECÍFICA DEL	Muy bueno/	Bueno/	Moderado/	Deficiente
	TIPO	bueno	moderado	deficiente	/ malo
L-T03 AI	ta montaña septentri	ional, poco pro	fundo, aguas	ácidas	
IBCAEL	8,62	0,92	0,69	0,46	0,23
Cobertura macrófitos eutróficas (%)	0	0,99	0,9	0,5	0,3
Cobertura macrófitos exóticas (%)	0	1	0,95	0,75	0,5
Hidrófitos	Presencia	Presencia	Ausencia		
Biovolumen (mm3/L)	1,4	0,67	0,55	0,37	0,18
Clorofila a (mg/m3)	1,3	0,68	0,49	0,34	0,17
pH		12	(6-9)	(≤6 ó ≥9)	
Fósforo total (mg P/m3) Disco de Secchi (m)		12 4,5	18 3		
Disco de Secciii (III)	L-T05: Alta montaña	· · ·	-		
IBCAEL	8,62	0,92	0,69	0,46	0,23
Cobertura macrófitos eutróficas (%)	0	0,99	0,9	0,5	0,3
Cobertura macrófitos exóticas (%)	0	1	0,95	0,75	0,5
Hidrófitos	Presencia	Presencia	Ausencia		
Clorofila a (mg/m3)	1,8	0,62	0,37	0,24	0,13
рН			(6-9,5)	(≤6 ó > 9,5)	
Fósforo total (mg P/m3)		18	26		
	-T10: Cárstico, calcáre				
IBCAEL	4,66	0,93	0,69	0,46	0,23
Riqueza macrófitos (№ de especies)	11		0,64	0,37	0,18
Cobertura macrófitos eutróficas (%)	0	0,99	0,9	0,5	0,3
Cobertura macrófitos exóticas (%)	0	1	0,95	0,75	0,5
Cobertura helófitos (%)	100	0,9	0,75	0,3	0,1
Cobertura hidrófitos (%)	90	0,83	0,55	0,28	0,01
Biovolumen (mm3/L)	0,7	0,58	0,34	0,26	0,13
Clorofila a (mg/m3)	2,5	0,71	0,46	0,32	0,18
рН			(7-9,7)	(≤7 ó ≥9,7)	
Fósforo total (mg P/m3)		16	28		
Disco de Secchi (m)		4	3		
	2: Cárstico, calcáreo,				0.55
IBCAEL	4,66	0,93	0,69	0,46	0,23
Riqueza macrófitos (№ de especies)	10		0,7	0,41	0,21
Cobertura macrófitos eutróficas (%)	0	0,99	0,9	0,5	0,3
Cobertura macrófitos exóticas (%)	0	1	0,95	0,75	0,5
Cobertura helófitos (%)	80	0,88	0,75	0,37	0,13
Cobertura hidrófitos (%)	80	0,94	0,62	0,31	0,01
Biovolumen (mm3/L)	0,9	0,64	0,4	0,25	0,13
Clorofila a (mg/m3)	1,9	0,61	0,41	0,25	0,14
рН			(7-9,7)	(≤7 ó ≥9,7)	

INDICADOR	CONDICIÓN DE REFERENCIA/ CONDICIÓN ESPECÍFICA DEL TIPO	LÍMITES DE CAMBIO DE CLASE DE ESTADO Indicadores biológicos: RCE Indicadores químicos: MEDIDA			
		Muy bueno/ bueno	Bueno/ moderado	Moderado/ deficiente	Deficiente / malo
Fósforo total (mg P/m3)		12	22		
Disco de Secchi (m)		4	3		
L-T17 Interior en cuenca de sedimentación, mineralización baja, temporal					
IBCAEL	11,08	0,89	0,68	0,56	0,45
Riqueza macrófitos (№ de especies)	20		0,5	0,31	0,16
Cobertura macrófitos eutróficas (%)	0	0,99	0,9	0,5	0,3
Cobertura macrófitos exóticas (%)	0	1	0,95	0,75	0,5
Cobertura total macrófitos (%)	100	0,9	0,75	0,3	0,1
Clorofila a (mg/m3)	3,7	0,67	0,43	0,26	0,16
рН			(6,5-9,5)	(≤6,5 ó ≥ 9,5)	
Fósforo total (mg P/m3)		20	45		

Tabla 12. Valores de referencia para la evaluación del estado ecológico de los lagos de la cuenca del Tajo

Para definir las clases de estado, se calcula la desviación de los índices de calidad con respecto a las condiciones de referencia. En el caso de los indicadores biológicos se obtiene el Ratio de Calidad Ecológico (RCE o EQR).

En relación al fitoplancton, y para aquellas tipologías que utilizan las dos métricas, Clorofila a y Biovolumen, se aplica la siguiente fórmula para el cálculo del promedio de los EQR normalizados:

$$EQR_{Norm} = 0.75 * EQR_{Cla} + 0.25 * EQR_{Biov}$$

Como puede observarse, se ha dado más peso a la concentración de Clorofila a, ya que la mayor cantidad y fiabilidad de sus datos ha generado una estimación más robusta de las condiciones de referencia y los valores frontera entre clases de estado.

Tal y como sucede con las masas naturales de categoría río, la evaluación del estado ecológico comienza con los elementos de calidad biológicos, clasificándose en 5 categorías: muy bueno, bueno, moderado, deficiente o malo, debiendo prevalecer la peor entre las resultantes. Por otra parte, se consideran los elementos de calidad fisicoquímicos, clasificándose en 3 categorías: muy bueno, bueno o moderado.

El diagnóstico final para cada masa de agua se corresponde con la peor categoría de las asignadas para cada uno de los indicadores evaluados.

El 21 de enero de 2022 entró en vigor el Real Decreto Real Decreto 47/2022, de 18 de enero, sobre protección de las aguas contra la contaminación difusa producida por los nitratos procedentes de fuentes agrarias. Mediante el precitado Real Decreto, se añade al Real Decreto 817/2015 el artículo 8bis y un apartado D al anexo III sobre los criterios y especificaciones técnicas para el seguimiento y clasificación del estado de las aguas. Este nuevo apartado hace

referencia a la **caracterización del estado trófico** de las masas de agua. Para llevar a cabo esta caracterización, se aplicarán los mismos criterios definidos en el apartado 3.1.1.3, ya que la caracterización del estado trófico se ha de realizar tanto en las masas de agua continentales de categoría lago, como en las muy modificadas asimilables a lagos.

3.1.2 Estado químico

La evaluación del estado químico de las masas de agua superficial se establece de acuerdo con el cumplimiento de las normas de calidad medioambiental (NCA) respecto a las sustancias prioritarias y otros contaminantes, recogidos en el Anexo IV del RD 817/2015. Estas normas de calidad son de obligado cumplimiento para la consecución del buen estado químico.

Para la determinación del estado químico de las masas de agua superficial de la Demarcación Hidrográfica del Tajo, se ha partido de los datos de las campañas 2015, 2016, 2017, 2018 y 2019.

Una masa de agua superficial alcanza el buen estado químico si para cada una de las sustancias referidas se cumplen las siguientes condiciones:

- La media aritmética de las concentraciones medidas en cada punto de control representativo de la masa de agua, en diferentes momentos a lo largo del año, no excede el valor de la NCA expresada como valor medio anual.
- La concentración medida en cualquier punto de control representativo de la masa de agua a lo largo del año, no excede el valor de la NCA expresada como concentración máxima admisible.
- La concentración de las sustancias no aumenta en el sedimento ni en la biota.
- Se cumplen el resto de NCA.

Es importante destacar que:

- A la hora de realizar cálculos con los resultados analíticos, como es el caso de los valores medios, el número de cifras significativas ha sido el marcado por la norma.
- Respecto al PHT2016, el criterio de evaluación del estado químico de las masas de agua superficial se ha modificado, en aplicación de la versión consolidada del RDSE (que data del 29 de diciembre de 2016), al identificar las nuevas sustancias en la Directiva 2013/39/UE y revisar determinadas normas de calidad ambiental, siendo aplicables estas NCA desde el 22 de diciembre de 2018.
- Para aquellos casos en los que la concentración resultante (media anual, media del período o puntual) es igual a la NCA, se ha considerado que no ha superado el valor de la NCA, alcanzando un buen estado químico, pero con un nivel de confianza medio.
- El RDSE establece para el níquel y sus compuestos normas de calidad referidas a las concentraciones biodisponibles. El cálculo de las concentraciones biodisponibles se ha realizado aplicando un modelo de biodisponibilidad desarrollado con la herramienta bio-met realizada por el European Copper Institute, la asociación International Zinc Association y la Organización NiPERA.

Para poder transformar los resultados de los controles de este metal en concentración biodisponible se ha llevado a cabo la determinación de otros parámetros químicos adicionales como son la dureza, el pH y el carbono orgánico disuelto, tal y como se recoge en el anexo I de la Directiva 2008/105/CE, traspuesto a través del anexo IV apartado B del RDSE. Los valores de carbono orgánico disuelto se han obtenido de datos de muestras tomadas en la red de seguimiento, de la información registrada en las estaciones del Sistema Automático de Calidad de las Aguas (SAICA) o utilizando la relación COD= DQO/3, según la mejor información disponible en cada caso.

Con base en el artículo 8 bis de la Directiva 2008/105/CE, traspuesto a través del artículo 31 del Reglamento de la Planificación Hidrológica, en aquellos casos en los que la contaminación química se deba a la presencia de sustancias PBT ubicuas (esto es, sustancias para las que ya se han tomado medidas que han reducido las emisiones de forma muy significativa y, sin embargo, debido a sus propiedades intrínsecas, utilización generalizada y posibilidad común de transporte a gran distancia, pueden encontrarse durante décadas en el medio acuático a niveles que suponen un riesgo significativo), dicha contaminación se identificará en la masa de agua en que se haya detectado, pero no se usará para la evaluación global del estado químico. En cualquier caso, el que una determinada sustancia pueda proceder de una contaminación ubicua o trasfronteriza, no permite suponer directamente o de forma generalizada que su presencia localizada no pueda ser causada también por fuentes locales de contaminación significativa. En este caso, la presencia de esa sustancia no deberá excluirse de la evaluación del estado químico de las masas de agua afectadas por ese foco de presión.

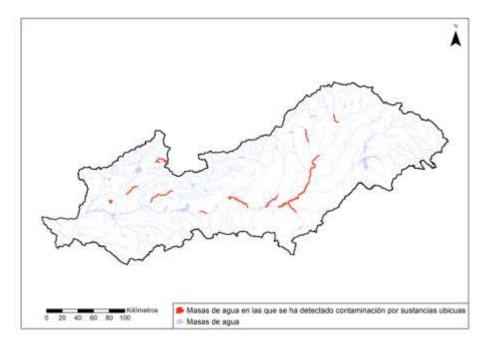


Figura 4. Contaminación ubicua

 Para la evaluación del estado químico a nivel de ciclo respecto al cumplimiento de las NCA-MA y las NCA-biota se ha atendido complementariamente a lo indicado en la guía para la evaluación del estado de las aguas elaborado por el MITECO, llevando a cabo un análisis de la tendencia con todos los datos brutos del periodo completo para seleccionar los datos a considerar en el cálculo; de tal modo que si el r² de la recta de ajuste es mayor o igual a 0,8, se ha tomado el valor del último año de estudio, y si el si el r² de la recta de ajuste es menor a 0,8, y por lo tanto no existe una tendencia clara, se ha valorado el estado con el promedio de las medias anuales respecto a estas NCA.

• En el caso del análisis a nivel de ciclo de las NCA-CMA, se ha realizado el cálculo del P (95) considerando todos los datos brutos del período completo. Para realizar el cálculo del P (95) tiene que haber datos de al menos 4 años del periodo. Si el P (95) es mayor a la NCA-CMA se considera que no alcanza el buen estado químico, y si el P (95) es menor o igual a la NCA-CMA se considera que alcanza el buen estado químico. No es necesario calcular el P (95) si todos los valores disponibles para el período completo son inferiores al LQ o a la NCA-CMA; en este caso se evalúa como que alcanza el buen estado químico atendiendo a la NCA-CMA.

El diagnóstico final del estado químico de las masas de agua superficial debe ajustarse a la siguiente clasificación:

Clasificación del estado químico
Bueno
No alcanza el buen estado

Tabla 13. Clasificación del estado químico en las masas de agua superficial de la cuenca del Tajo

3.1.3 Estado final

El estado final de una masa de agua superficial viene determinado por el peor valor de su estado o potencial ecológico y de su estado químico. Cuando ambos estados son al menos buenos, el estado de la masa de agua superficial se evalúa como bueno o mejor. En cualquier otra combinación, el estado se evalúa como peor que bueno. La consecución del buen estado en las masas de agua superficial requiere, por tanto, alcanzar al menos un buen estado o potencial ecológico y un buen estado químico.

El diagnóstico del estado final de las masas de agua superficial debe ajustarse a la siguiente clasificación:

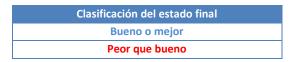


Tabla 14. Clasificación del estado final en las masas de agua superficial de la cuenca del Tajo

3.2 Evaluación del estado de las masas de agua subterránea

El estado de las masas de agua subterráneas queda determinado por el peor valor de su estado cuantitativo y de su estado químico. Cuando ambos estados son buenos, el estado de la masa de agua subterránea se evalúa como bueno. En cualquier otra combinación, el estado se evalúa como malo. La consecución del buen estado en las masas de agua subterráneas requiere, por tanto, alcanzar al menos un buen estado cuantitativo y un buen estado químico.

3.2.1 Evaluación del estado cuantitativo

Para la evaluación del estado cuantitativo de las masas de agua subterránea en la cuenca del Tajo, se han aplicado los test establecidos en la *Guía para la evaluación del estado de las aguas superficiales y subterráneas* (MITECO, 2020) en adelante Guía MITECO, que utiliza los criterios descritos en la Guía Nº 18 de la Estrategia Común de Implementación de la DMA. De acuerdo con esta guía, la evaluación del estado de las masas de agua subterránea se llevará a cabo solo en aquellas masas en las que se haya establecido que existe un riesgo de no alcanzar los objetivos medioambientales. En los Documentos Iniciales consolidados publicados en julio de 2020 se identificaron seis masas de agua subterránea en riesgo de no alcanzar el buen estado cuantitativo. No obstante, dado que al actualizar las extracciones, se han observado aumentos significativos de éstas en la masa de agua subterránea Algodor, también se han realizado los test en dicha masa (Tabla 15).

Código	Denominación	Naturaleza	Extensión (km²)
030.004	Torrelaguna	Carbonatada	146
030.010	Madrid: Manzanares-Jarama	Detrítica	539
030.011	Madrid: Guadarrama-Manzanares	Detrítica	896
030.012	Madrid: Aldea del Fresno-Guadarrama	Detrítica	574
030.018	Ocaña	Carbonatada	928
030.025	Algodor	Detrítica/carbonatada	1290
030.026	Sonseca	Alterita/plutónica	558

Tabla 15. Propuesta de masas de agua subterráneas en riesgo de no alcanzar el buen estado cuantitativo

Esta metodología se basa en la aplicación de cuatro test, que abarcan, cada uno de ellos, los diferentes criterios establecidos por la definición de buen estado cuantitativo de las masas de agua subterránea. También se establece el nivel de confianza en este proceso de evaluación como en los datos empleados.

Los test a aplicar son los siguientes: Test 1 de balance hídrico, Test 2 de masas de agua superficial asociadas a las aguas subterráneas, Test 3 de ecosistemas dependientes de las aguas subterráneas y Test 4 de salinización y otras intrusiones.

De todos ellos, el último test no se ha aplicado ya que las concentraciones de sulfatos y cloruros monitorizadas por las redes de control, en las masas de agua subterránea Aluvial del Tajo: Aranjuez-Toledo (030.017) y Ocaña (030.018), están causadas por la litología evaporítica y no por las extracciones en dichas masas, como se recoge en el análisis llevado a cabo para la evaluación del estado químico.

En las fichas de las masas de agua subterránea recogidas en el Apéndice 2 del Anejo 10 Objetivos medioambientales, se incluyen fichas con una caracterización de las masas de agua en riesgo, que incluyen los datos utilizados en la elaboración de cada test además de mapas, gráficos y otra información complementaria. En detalle, se identifican los hábitats ligados al agua presentes en los LIC y ZEC de la cuenca, analizando aquellos con un estado de conservación reducido y vinculados a masas de agua subterránea, así como aquellos hábitats vinculados a masas de agua superficial cuya escorrentía subterránea es significativa.

.En cuanto a los espacios protegidos de la Red Natura 2000 donde se han localizado especies ligadas al medio hídrico con un estado de conservación reducido, no quedan recogidos en esas

fichas, por un lado, debido a la elevada incertidumbre respecto a la relación entre dichas especies y las masas de agua subterránea, y por otro lado, porque ese estado de conservación reducido no podría atribuirse de manera directa a la extracción de aguas subterráneas, dadas las numerosas presiones y amenazas existentes en dichos espacios protegidos.

3.2.1.1 Test 1 de balance hídrico

Este test tiene en cuenta tanto la tendencia piezométrica como el índice de explotación, estableciéndose varios escenarios para diagnosticar el mal estado cuantitativo:

- Cuando la tendencia piezométrica a largo plazo sea descendente, siempre que su análisis arroje resultados significativos.
- Si la tendencia piezométrica no es descendente pero el índice de explotación es mayor o igual a 1.
- Cuando el índice de explotación sea mayor o igual a 0,8 y además exista una tendencia piezométrica a largo plazo descendente, evaluada mediante algún modelo de flujo.

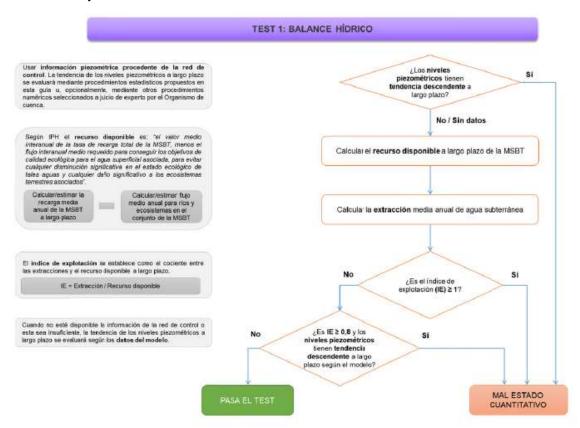


Figura 5. Procedimiento del Test 1 (MITECO 2020)

Para el análisis de la tendencia, se considera descendente si la proporción de puntos piezométricos representativos con tendencia descendente es igual o superior al 20% o bien si esta tendencia se da en una zona relevante de la masa de agua. Asimismo, para el cálculo de esta proporción, la Guía MITECO establece que se puede asignar a cada piezómetro un factor de ponderación o un peso respecto a la tendencia a evaluar: el valor del peso será un valor

entre 0 y 1 (por defecto será 1), considerándose para ello tanto aspectos propios del punto como del acuífero. Se ha ponderado en función de la influencia de bombeos próximos (0,5), de si se trata de sondeos equipados (0,25), por corresponder a formaciones someras en acuíferos regionales (0,25), o por captar más de un acuífero (0,25).

Para la estimación del riesgo de las MSBT se emplearon series históricas y datos piezométricos desde 1972. Sin embargo, para el análisis piezométrico se ha empleado ahora el periodo comprendido entre los años hidrológicos 2008 y 2018, con mayor continuidad de datos, de forma que las tendencias observadas en los distintos piezómetros sean comparables.

Las masas de agua Madrid: Guadarrama-Manzanares (030.011) y Madrid: Aldea del Fresno-Guadarrama (030.012) muestran un porcentaje de piezómetros inferior al 20 % con tendencia descendente; Torrelaguna (030.004), Madrid: Manzanares-Jarama (030.010) y Ocaña (030.018) no muestran tendencias claramente descendentes en el periodo estudiado; Algodor (030.025) y Sonseca (030.026) no disponen de piezómetros, y precisarán de estudio y seguimiento en el siguiente ciclo de planificación. Así, el nivel de confianza de la evaluación de tendencias es alto, excepto en las masas Algodor y Sonseca. El resultado del análisis de la tendencia piezométrica se recoge en la Tabla 16.

MSBT	Espesor medio (m)	Naturaleza acuífero	Régimen	% de piezómetros descendentes
030.004 Torrelaguna	130	Carbonatado	Confinado	0
030.010 Madrid: Manzanares- Jarama	1750	Detrítico	Libre / Confinado	9
030.011 Madrid: Guadarrama- Manzanares	1500	Detrítico	Libre / Confinado	18
030.012 Madrid: Aldea del Fresno-Guadarrama	1750	Detrítico	Libre / Confinado	18
030.018 Ocaña	20	Carbonatado	Libre	17
030.025 Algodor	100	Detrítico/carbonatado	Libre / Confinado	
030.026 Sonseca	15	Alterita/detrítico	Libre	

Tabla 16. Características y tendencias piezométricas de las de las MSBT en riesgo cuantitativo.

Para el cálculo del índice de explotación (IE) se han considerado las siguientes entradas a los acuíferos (recursos renovables):

- infiltración de la lluvia,
- entradas desde los cauces,
- retorno de riego y pérdidas de las redes de distribución y alcantarillado,
- transferencias laterales de las MSBT vecinas o de acuíferos locales, tanto entradas como salidas, que se detraerán del total.

Siendo el recurso disponible (R_{DIS}) de agua subterránea el dado por la diferencia entre los recursos renovables (R_{RENO}) y las necesidades ambientales (R_{AMB}), restando también las transferencias a otras MSBT:

$$R_{DIS} = R_{RENO} - R_{AMB} (hm^3/a\tilde{n}o)$$

El recurso disponible anual estimado de todas las masas de agua subterránea se recoge en la Tabla 17. Como ya se describió en los DD.II., existen amplios rangos de variación en las estimaciones de estos recursos, a causa de la incertidumbre en cuanto a la estimación de la recarga y sus distintos orígenes y las influencias en el funcionamiento hidrodinámico, a la hora de considerar extracciones reales o derechos concesionales, que pueden modificar las transferencias laterales y descarga a los ríos. Con estas consideraciones se ha obtenido el valor medio que se recoge en la Tabla 17, basado en numerosos estudios específicos de la cuenca.

Código	Masas de agua subterránea	Recurso disponible (hm³/año)
ES030MSBT030.001	Cabecera del Bornova	5
ES030MSBT030.002	Sigüenza-Maranchón	10
ES030MSBT030.003	Tajuña-Montes Universales	179
ES030MSBT030.004	Torrelaguna	6
ES030MSBT030.005	Jadraque	3
ES030MSBT030.006	Guadalajara	87
ES030MSBT030.007	Aluviales Jarama-Tajuña	70
ES030MSBT030.008	La Alcarria	109
ES030MSBT030.009	Molina de Aragón	16
ES030MSBT030.010	Manzanares - Jarama	29
ES030MSBT030.011	Guadarrama- Manzanares	39
ES030MSBT030.012	Aldea del Fresno-Guadarrama	23
ES030MSBT030.013	Aluvial del Tajo: Zorita de los Canes-Aranjuez	38
ES030MSBT030.014	Entrepeñas	16
ES030MSBT030.015	Talavera	199
ES030MSBT030.016	Aluvial del Tajo: Toledo-Montearagón	46
ES030MSBT030.017	Aluvial del Tajo: Aranjuez-Toledo	53
ES030MSBT030.018	Ocaña	14
ES030MSBT030.019	Moraleja	35
ES030MSBT030.020	Zarza de Granadilla	10
ES030MSBT030.021	Galisteo	105
ES030MSBT030.022	Tiétar	191
ES030MSBT030.023	Talaván	14
ES030MSBT030.024	Aluvial del Jarama: Guadalajara-Madrid	34
ES030MSBT030.025	Algodor	23
ES030MSBT030.026	Sonseca	12

Tabla 17. Recurso disponible estimado, en hm³/año para las MSBT

En cuanto a las extracciones, se han considerado los derechos concesionales en condiciones normales de suministro. No obstante, en el caso del CYII, se ha calculado también mediante datos de extracciones reales. En la Tabla 18 se recogen las extracciones por usos. En las masas de agua en la Comunidad de Madrid (CAM), los datos de derechos del CYII no son la suma de sus concesiones, pues estando éstas condicionadas a su utilización en época de sequía, se ha ponderado el volumen máximo concedido en un periodo de cinco años, estimándose que esa sería la frecuencia en la que entrarían en funcionamiento. En Torrelaguna (030.004) también

se ha ponderado teniendo en cuenta su condicionante medioambiental, pues en la concesión se limitan las extracciones en función del caudal ecológico en el río Jarama.

MSBT	A (extracciones)	A (derechos)	R	G	1	OTROS	TOTAL (extracciones)	TOTAL (derechos)
Torrelaguna (030.004)	2,8	4,7	0,1	0	0	0	2,9	4,8
Madrid: Manzanares- Jarama (030.010)	3,2	17,4	1,5	0,1	4	2,3	11,1	25,2
Madrid: Guadarrama- Manzanares (030.011)	8,6	25,5	2,0	0,1	1,8	2,9	15,4	32,3
Madrid: Aldea del Fresno-Guadarrama (030.012)	1,8	6,8	3,3	0,2	0,8	0,5	6,6	11,6
Ocaña (030.018)	0,1	0,1	9,2	0,1	0,1	0,2	9,7	9,7
Algodor (030.025)	0,5	0,5	15,2	0,4	0,2	0	16,3	16,3
Sonseca (030.026)	0,1	0,1	10,3	0,3	0,1	0	11	11

Tabla 18. Aprovechamientos activos de agua subterránea por usos en hm³/año (Leyenda: A-abastecimiento (extracciones o derechos concesionales), R-regadío, G- ganadería, I- industrial

El índice de explotación se obtiene como el cociente entre la tasa media anual de extracción y los recursos disponibles.

$$\text{Índice de Explotación (IE)} = \frac{Tasa \ media \ anual \ de \ extracción}{Recursos \ disponibles}$$

El resultado del test se muestra en la Tabla 19. Se han obtenido dos IE, uno asociado a los derechos concesionales (IE derechos), con la ponderación de las concesiones del CYII en la CAM a cinco años y otro que considera las extracciones reales medias del CYII en el periodo 2009-2019 (IE extracciones). Estas captaciones del CYII se sitúan en las MSBT Torrelaguna (030.004), Madrid: Manzanares-Jarama (030.010), Madrid: Guadarrama-Manzanares (030.011) y Madrid: Aldea del Fresno-Guadarrama (030.012). Las MSBT no presentan tendencia piezométrica descendente. El índice de explotación en las MSBT con captaciones del CYII, es menor cuando se usan extracciones reales. Con el cálculo que considera los derechos concesionales, el IE sería superior a 0,8 en la MSBT Sonseca (030.026). Al no superarse el valor de 1 y no disponer de una red piezométrica para evaluar la tendencia, esta MSBT se puede considerar en buen estado, aunque con NCF bajo.

MSBT	Tendencia piezométrica	IE derechos	IE extracciones	Estado	NCF
Torrelaguna (030.004)	No desciende	0,78	0,56	BUENO	ALTO
Madrid: Manzanares-Jarama(030.010)	No desciende	0,79	0,38	BUENO	ALTO
Madrid: Guadarrama-Manzanares(030.011)	No desciende	0,80	0,39	BUENO	ALTO
Madrid: Aldea del Fresno-Guadarrama(030.012)	No desciende	0,52	0,28	BUENO	ALTO
Ocaña(030.018)	No desciende	0,70	0,70	BUENO	ALTO
Algodor(030.025)	Mantenimiento	0,70	0,70	BUENO	BAJO
Sonseca(030.026)	Mantenimiento	0,89	0,89	BUENO	BAJO

Tabla 19. Cálculo del índice de explotación para las MSBT en riesgo

	Torrela (030.		Madı Manzar Jarama (0	iares-	Madr Guadari Manzar (030.0	rama- nares	Madrid: del Fre: Guadari (030.0	sno- rama	Ocañ a (030. 018)	Algo dor (030. 025)	Sonsec a (030.02 6)
Entradas	hm³/añ	hm³/a	hm³/año	hm³/a	hm³/año	hm³/a	hm³/añ	hm³/	hm³/	hm³/	hm³/añ

		Torrelaguna Madrid: (030.004) Manzanares- Jarama (030.010)		Guadarı Manzaı	Madrid: Guadarrama- Manzanares (030.011)		Aldea sno- rama 112)	Ocañ a (030. 018)	Algo dor (030. 025)	Sonsec a (030.02 6)	
	0	ño		ño		ño	0	año	año	año	0
Infiltración agua lluvia	16,32	16,32	24,00	24,00	43,00	43,00	33,86	33,8 6	20,8 9	35,1 4	14,29
Infiltración desde ríos, embalses, humedales	1,36	1,36	1,90	1,90	0	0	0	0,00	0,36	3,1	1,23
Transferencias laterales desde otros acuíferos	0	0	7,41	7,41	6,46	3,62	5,56	3,07	0	0	0
Retornos de riego	0,16	0,16	2,25	2,25	2,25	2,25	0,59	0,59	1,00	1,03	1,52
Pérdidas de redes	0	0	10,06	10,06	10,94	10,94	1,55	1,55	0	0	0
Total	17,84	17,84	45,62	45,62	62,65	59,81	41,56	39,0 7	22,2 5	39,2 7	17,04
Salidas	Extracci	Derech	Extraccio	Derec	Extraccio	Derec	Extracci	Dere	Dere	Dere	Derech
Salidas	ones	os	nes	hos	nes	hos	ones	chos	chos	chos	os
Descarga de manantiales	0	0	0	0	0	0	0	0	0	0	0
Salidas a ríos o humedales	7,59	6,65	25,86	14,50	35,32	19,50	25,81	19,7 9	12,5 9	18,3 8	6,05
Transferencias laterales a otros acuíferos	7,29	6,39	6,46	3,62	8,83	4,87	6,45	4,95	0	4,60	0
Extracciones	2,96	4,80	11,00	25,20	15,40	32,34	6,60	11,6 3	9,66	16,2 9	10,99
Evapotranspiración	0,00	0,00	2,30	2,30	3,10	3,10	2,70	2,70	0	0	0
Total	17,84	17,84	45,62	45,62	62,65	59,81	41,56	39,0 7	22,2 5	39,2 7	17,04

Tabla 20. Balance hídrico de las MSBT en riesgo

En el anejo 10. Objetivos medioambientales, se incluyen fichas con una caracterización de las masas de agua en riesgo, que incluyen los datos utilizados en la elaboración de cada test además de gráficos de niveles piezométricos, balances en la situación actual y estimada a 2039 por efecto del cambio climático y otra información complementaria.

3.2.1.2 Test 2 de Masas de agua superficial asociadas a las aguas subterráneas

Una masa de agua subterránea se diagnostica en mal estado cuantitativo cuando las masas de agua superficial (MSPF) asociadas estén en un estado peor que bueno e incumplan el caudal ecológico mínimo, verificándose que las extracciones de aguas subterráneas son una causa significativa de este incumplimiento. En este test se evaluarán implícitamente los ecosistemas dependientes de las masas de agua superficial asociadas en las que se ha llevado a cabo este test.

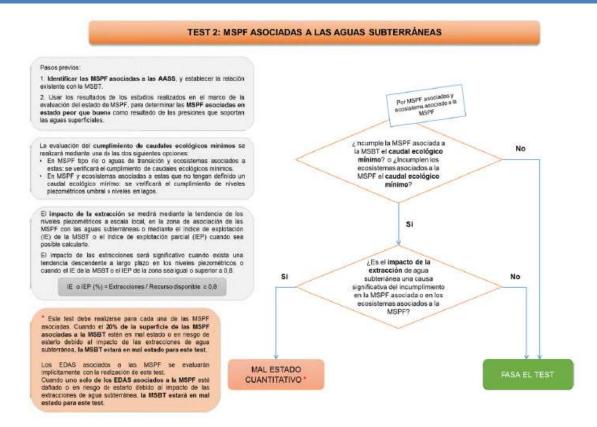


Figura 6. Procedimiento del TEST 2 (MITECO 2020)

Inicialmente hay que identificar las masas de agua superficial (MSPF) que no alcanzan el buen estado sin que la causa sea el incumplimiento de indicadores fisicoquímicos. Una vez identificadas estas hay que estimar la causa y si ésta proviene de las extracciones de agua subterránea. Se ha tomado como referencia el estado ecológico y dentro de éste, a su vez, el de calidad biológica. Si están en estado inferior a bueno, se considera que potencialmente la causa de su mal estado puede estar relacionada con la extracción de las aguas subterráneas y se realiza el test.

Este test debe aplicarse a escala local, en el entorno de la zona de conexión de las masas de agua superficial asociadas y que esta conexión, en régimen natural, sea ganadora o variable, por tanto, no se han considerado las masas asociadas a embalses.

Para valorar el incumplimiento del caudal ecológico mínimo, elemento que, junto con el mal estado de la masa superficial, podría determinar el mal estado cuantitativo de la masa de agua subterránea, se ha comprobado si las masas de agua superficial cumplen el caudal ecológico mínimo en la simulación realizada con AQUATOOL para la asignación y reserva de recursos. Si en algún caso no se disponía de ese dato, se ha tenido en cuenta el nivel piezométrico umbral (NPU), definido como la cota del nivel del agua en el piezómetro por debajo de la cual, se estima que se producirían afecciones significativas a los cursos de agua superficial o a los ecosistemas asociados al acuífero. Dado que en casi todas las masas de agua subterránea de la cuenca del Tajo, la cota piezométrica observada en los piezómetros es más alta que la de los ríos próximos, en una primera aproximación se ha considerado como NPU la cota del río más próximo al piezómetro en sentido de la dirección de flujo; no obstante, como para que se produzca flujo del acuífero al río tiene que existir un gradiente piezométrico, para mejorar la

estimación del NPU se ha obtenido una superficie continua que pasa por todos los ríos de la cuenca, definiéndose el NPU de cada piezómetro como la cota de esa superficie en el punto donde se localiza el piezómetro¹.

Debido a que el agua subterránea se mueve lentamente y los impactos ecológicos en los ecosistemas asociados a las MSPF pueden tardar un tiempo considerable en hacerse evidentes, siempre que sea posible, se aplicará un enfoque basado en el riesgo, tal como recomienda la Guía MITECO. También deben tenerse en cuenta, en el caso de MSPF que se extiendan fuera de la MSBT, aquellos tramos significativos que discurran por la MSBT, no considerando otros cuyo contacto sea muy reducido.

Para establecer el NPU se han empleado los piezómetros más próximos a las MSPF seleccionadas. Además de comparar las lecturas del piezómetro con el NPU, para conocer el impacto de las extracciones de agua subterránea se utiliza la tendencia piezométrica a largo plazo de los piezómetros representativos situados en el área de asociación de las MSPF con las aguas subterráneas y sus ecosistemas asociados, si esta tendencia fuese descendente, se determinará el IE parcial (IEP) del entorno cuyas extracciones pudiesen influir en la MSPF. Para establecer dicho IEP se han seleccionado los aprovechamientos de aguas subterráneas en un área próxima de influencia determinada a partir de las isopiezas regionales; el recurso disponible se ha estimado, al igual que para el IE de la MSBT, considerando como recarga tanto la infiltración de la lluvia en esa superficie como la transferencia subterránea procedente de la propia MSBT.

El índice de explotación parcial (IEP) se calculará mediante la siguiente expresión:

$$\label{eq:indice} \text{Indice de Explotación parcial (IEP)} = \frac{Tasa\ media\ anual\ de\ extracción\ parcial}{Recursos\ disponibles\ parciales}$$

La masa de agua subterránea se evaluará en mal estado cuantitativo para este test, si cumple tres requisitos: 1) MSPF en estado peor que bueno, 2) el 20% de la longitud total de las MSPF asociadas incumplen el caudal ecológico mínimo o en su defecto el nivel piezométrico umbral y 3) la tendencia piezométrica a largo plazo en los piezómetros del entorno sea descendente y el valor el IEP >0,8. También cuando alguno de los ecosistemas asociados a la MSPF, no alcanza el buen estado de conservación, y se presentan, incumplimientos del caudal ecológico o NPU y la tendencia piezométrica descendente o IEP superior a 0,8.

De todas la MSPF relacionadas con las aguas subterráneas existiría una MSPF que podría sufrir algún tipo de afección por extracciones de aguas subterráneas: *Río Jarama desde Río Guadalix hasta Arroyo de Valdebebas* (ES030MSPF0421021). Es un tramo históricamente considerado ganador, siendo zona de descarga desde la masa Madrid: Manzanares-Jarama (030.010) a través de la MSBT Aluvial del Jarama: Guadalajara-Madrid (030.024). El estudio de los dos piezómetros próximos (030.10.002 y 03.05.076) así como del piezómetro más próximo (03.05.030) de la MSBT contigua Guadalajara (030.006), muestra una cota piezométrica

¹ Esta cota viene referida en los gráficos de niveles piezométricos que figuran en las fichas de caracterización adicional como CNBL (Channel network base level)

situada por debajo de la cota de lecho del río. Ello implicaría que el régimen del río es, desde que se tiene registros piezométricos continuados, variable o perdedor, causado por extracciones históricas. La tendencia de estos piezómetros, para el periodo 2008-2018, es de ascenso. En esta zona se encuentra una industria con una elevada concesión, lo que hace que el IEP sea superior a 0,8. Considerando que la longitud del conjunto de MSPF asociadas a la MSBT 030.010 es de 98016 m, el porcentaje que supone la longitud total de la masa superficial *Río Jarama desde Río Guadalix hasta Arroyo de Valdebebas* es del 17 % y no supera el 20 % establecido como límite en la Guía MITECO (Tabla 21). Además, de acuerdo con la simulación realizada con Aquatool, no se producirían fallos en los caudales ecológicos. Por tanto, y aunque pudiera existir algún tipo de afección, la masa de agua subterránea superaría este test.

En cuanto a los ecosistemas asociados a las aguas superficiales analizados en este test, se han considerado como tales los situados hasta una distancia de 100 m desde el eje del río. Para la identificación de estos hábitats, se ha empleado como punto de partida la información proveniente de la base de datos SPAINCNTRYES (2019), donde se han identificado las amenazas atribuibles que pueden estar relacionadas con las extracciones de aguas subterráneas en cada LIC-ZEC. No se estima que exista ningún hábitat que esté en mal estado de conservación como consecuencia de un alto grado de extracción de aguas subterráneas.

MSBT	ı	MSPF	MSPF (m lineales)	Calid ad BIO	Caudal ecológico mínimo	Piezómetro (tendencia)	IEP/observaciones	CONCLUSIÓN	RESULTADO TEST	NCF
	ES030MSP F0427021	Río Manzanares a su paso por Madrid	8000	MD	Se cumple, según simulación de Aquatool	03.05.091(A)	S= 80 km ² EX=: 1.479.449 m ³ IEP= 0,25 (lo mismo para la 030.011, es un cálculo para ambas)	SIN AFECCIÓN		
030.010 Madrid: Manzanares- Jarama	ES030MSP F0428021	Río Manzanares desde Embalse de El Pardo hasta Arroyo de Trofa	6201	D	Se cumple, según simulación de Aquatool	03.05.031(A)	S= 18 km² Ex= 25964 m³ Bajo volumen de extracción	SIN AFECCIÓN		
	ES030MSP F0430021	Río Manzanares desde Embalse de Manzanares el Real hasta Embalse de El Pardo	270	MD	Se cumple, según simulación de Aquatool		Tramo no significativo		PASA	ALTO
	ES030MSP F0421021	Río Jarama desde Río Guadalix hasta Arroyo de Valdebebas	16191	MD	Se cumple, según simulación de Aquatool	030.010.002(A)	S= 23 km² EX= 2.010.831 m³ IEP=1,33 Influencia de las extracciones de uso industrial. Las oscilaciones anuales en el piezómetro son de 10-11 m. LA PNP desde inicio serie está por debajo del rio.	CON POSIBLE AFECCIÓN		
	ES030MSP F0420021	Río Jarama desde Arroyo de Valdebebas hasta Río Henares	13295	D	Se cumple, según simulación de Aquatool		Extracciones no significativas	SIN AFECCIÓN		

MSBT	ı	MSPF	MSPF (m lineales)	Calid ad BIO	Caudal ecológico mínimo	Piezómetro (tendencia)	IEP/observaciones	CONCLUSIÓN	RESULTADO TEST	NCF
	ES030MSP F0402010	Río Guadarrama desde Río Aulencia hasta Bargas	10809 + 25457 (con. 030.012)	D	Se cumple, según simulación de Aquatool		S= 190 km² EX= 2.258.865 m³ IEP=0,19 (lo mismo para la 030.012, es un cálculo para ambas)	SIN AFECCIÓN		
	ES030MSP F0403110	Río Guadarrama desde Galapagar hasta Río Aulencia	11093	D	Se cumple, según simulación de Aquatool		S= 41 km ² EX= 1.035.024 m ³ IEP=0,31	SIN AFECCIÓN		
030.011 Madrid: Guadarrama-	ES030MSP F0403310	Río Guadarrama desde Embalse de Las Nieves hasta Embalse Molino de la Hoz	1133		Se cumple, según simulación de Aquatool		Tramo no significativo		PASA	ALTO
Manzanares	ES030MSP F0407021	Arroyo de los Combos	9594	D	Se cumple, según simulación de Aquatool	03.05.038(A)	Regionalmente las	SIN AFECCIÓN		
	ES030MSP F0408021	Arroyo del Soto hasta Río Guadarrama	6201	D	Se cumple, según simulación de Aquatool	03.05.004(A)	formaciones acuíferas se hallan por debajo del lecho del arroyo y el drenaje es hacia los ríos principales	SIN AFECCIÓN		
	ES030MSP F0413021	Arroyo del Plantío	6223	D	Se cumple, según simulación de Aquatool	03.05.089(A)	longitudinales	SIN AFECCIÓN		
	ES030MSP F0427021	Río Manzanares a su paso por Madrid	12000 8000 (con 030.010)	MD	Se cumple, según simulación de Aquatool		S= 80 km ² EX= 1.479.449 m ³ IEP= 0,25 (lo mismo para la 030.010, es un cálculo para	SIN AFECCIÓN		

MSBT		MSPF	MSPF (m lineales)	Calid ad BIO	Caudal ecológico mínimo	Piezómetro (tendencia)	IEP/observaciones	CONCLUSIÓN	RESULTADO TEST	NCF
							ambas)			
	ES030MSP F0428021	Río Manzanares desde Embalse de El Pardo hasta Arroyo de Trofa	6201	D	Se cumple, según simulación de Aquatool	03.05.085(A)		SIN AFECCIÓN		
	ES030MSP F0430021	Río Manzanares desde Embalse de Manzanares el Real hasta Embalse de El Pardo	270	MD	Se cumple, según simulación de Aquatool		Tramo no significativo			
	ES030MSP F0434021	Arroyo del Culebro	8878	D	Se cumple, según simulación de Aquatool	030.011.004(A)		SIN AFECCIÓN		
	ES030MSP F0435021	Arroyo de la Zarzuela	9239		Se cumple, según simulación de Aquatool		Regionalmente las formaciones acuíferas se hallan por debajo del lecho	SIN AFECCIÓN		
	ES030MSP F0436010	Arroyo de Trofa	19104	D	Se cumple, según simulación de Aquatool		del arroyo y el drenaje es hacia los ríos principales longitudinales	SIN AFECCIÓN		
	ES030MSP F0628021	Arroyo de Guatén y Arroyo de Gansarinos	6201	D	Se cumple, según simulación de Aquatool			SIN AFECCIÓN		
030.012 Madrid:	ES030MSP F0402010	Río Guadarrama	25457	D	Se cumple, según	03.05.084(SD)	S= 190 km ² EX= 2.258.865 m ³	SIN AFECCIÓN	PASA	ALTO

MSBT		MSPF	MSPF (m lineales)	Calid ad BIO	Caudal ecológico mínimo	Piezómetro (tendencia)	IEP/observaciones	CONCLUSIÓN	RESULTADO TEST	NCF
Aldea del Fresno- Guadarrama		desde Río Aulencia hasta Bargas			simulación de Aquatool		IEP=0,19 (lo mismo para la 030.011, es un cálculo para ambas)			
	ES030MSP F0403110	Río Guadarrama desde Galapagar hasta Río Aulencia	11903	D	Se cumple, según simulación de Aquatool		S= 41 km ² EX= 1.035.024 m ³ IEP= 0,31 (en conjunto con el 030.011)	SIN AFECCIÓN		
	ES030MSP F0403310	Río Guadarrama desde Embalse de Las Nieves hasta Embalse Molino de la Hoz	1133		Se cumple, según simulación de Aquatool		Tramo no significativo			
	ES030MSP F0409021	Río Aulencia desde Embalse de Aulencia hasta Río Guadarrama	9245	D	Se cumple, según simulación de Aquatool	03.05.040(A)	Recibe flujos de acuíferos locales.	SIN AFECCIÓN		
	ES030MSP F0505021	Río Alberche desde Río Perales hasta Arroyo de la Parra	12000	MD	Se cumple, según simulación de Aquatool	03.05.059 (D)	Muchas de las extracciones están asociadas a los depósitos cuaternarios del aluvial del Alberche, usado para riego de huertas. S=25 km² EX= 950468 m³ IEP=0,39	SIN AFECCIÓN		
	ES030MSP F0506021	Río Alberche desde Embalse de Picadas hasta Río Perales	4475	MD	Se cumple, según simulación de Aquatool		Tramo no significativo			

MSBT		MSPF	MSPF (m lineales)	Calid ad BIO	Caudal ecológico mínimo	Piezómetro (tendencia)	IEP/observaciones	CONCLUSIÓN	RESULTADO TEST	NCF
	ES030MSP F0519010	Cabecera del Río Perales y afluentes	11763	D	Se cumple, según simulación de Aquatool		S= 6 km ² EX= 2784 m ³	SIN AFECCIÓN		
030.018 Ocaña	ES030MSP F0627210	Arroyo de Martín Román hasta Arroyo de la Madre	86236		Se cumple, según simulación de Aquatool		Está asociado a acuíferos locales. Los manantiales del 030.018, si se detrae el caudal, puede afectar a la alimentación difusa, aunque también se extrae agua del rio y de las formaciones locales. Considerando en 030.018 una S=260 km² y EX= 2496929 m³, el IEP=0,15.	SIN AFECCIÓN	PASA	ВАЈО
	ES030MSP F0622021	Río Algodor desde Embalse de El Castro hasta Río Tajo	16290	MD	No se cumple, según simulación de Aquatool		S= 31,6 km ² EX= 1894768 m ³ IEP=0,63	SIN AFECCIÓN		
030.025 Algodor	ES030MSP F0624021	Río Algodor desde Embalse de Finisterre hasta Embalse de El Castro	28575	MD	Se cumple, según simulación de Aquatool		S= 44 km ² EX= 462121m ³ IEP=0,10	SIN AFECCIÓN	PASA	ВАЈО
	ES030MSP F0626010	Río Algodor desde Arroyo Bracea hasta Embalse de Finisterre	38899	М	Se cumple, según simulación de Aquatool		S= 37 km ² EX= 1153607m ³ IEP=0,40	SIN AFECCIÓN		
030.026 Sonseca	ES030MSP F0622021	Río Algodor desde Embalse de El Castro hasta Río Tajo	7600	MD	No se cumple, según simulación de		S= 7 km² Extracciones no significativas	SIN AFECCIÓN	PASA	BAJO

MSBT	MSI	PF	MSPF (m lineales)	Calid ad BIO	Caudal ecológico mínimo	Piezómetro (tendencia)	IEP/observaciones	CONCLUSIÓN	RESULTADO TEST	NCF
					Aquatool					
	ES030MSP F0624021 h	Río Algodor lesde Embalse de Finisterre nasta Embalse de El Castro	13090	MD	Se cumple, según simulación de Aquatool		S= 15 km² Extracciones no significativas	SIN AFECCIÓN		

Tabla 21. MSPF con estado ecológico inferior a bueno, relacionadas con las aguas subterráneas; Estado BIO MD-Moderado, D-Deficiente, M-Malo; Piezómetro (tendencia): A-ascenso, D-descenso, SD-suave descenso; S-superficie, EX extracciones, IEP- índice de explotación parcial)

3.2.1.3 Test 3 de ecosistemas dependientes de las aguas subterráneas

Una masa de agua subterránea se diagnostica en mal estado cuantitativo cuando se evidencia que los ecosistemas dependientes no alcanzan el buen estado de conservación, siendo las extracciones de aguas subterráneas una causa significativa de este incumplimiento. En este test se evalúan los ecosistemas no asociados a ninguna masa de agua superficial, ya evaluados en el test 2.

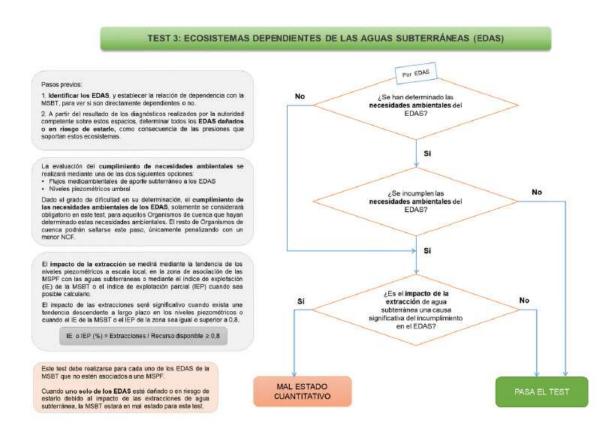


Figura 7. Procedimiento del Test 3 (MITECO 2020)

Para la identificación de estos hábitats, se ha empleado como punto de partida la información proveniente de la base de datos SPAINCNTRYES (2019). Se han considerado como dependientes de las aguas subterráneas aquellos hábitats acuáticos, donde el nivel piezométrico estimado fuera somero, y situados a más de 100 m de las masas de agua superficial, pues en caso contrario se han analizado en el test anterior.

En primer lugar, se identifican cuáles de esos hábitats no alcanzan el buen estado de conservación y entre cuyas amenazas figura la extracción de aguas subterráneas, según reporte de la información sobre la Directiva Hábitats, elaborado por las CC.AA., donde se establecen las presiones y amenazas a las que están sometidos los espacios de la RN2000. A continuación, se evalúan de manera local teniendo en cuenta la evolución de la cota piezométrica obtenida a partir de los piezómetros de la red de control más próximos, y si es preciso, se estima el IEP, calculado para el área de recarga próxima, considerando la dirección

de flujo del agua subterránea, así el área estimada de influencia contempla dos entradas: por infiltración de la lluvia y por circulación de agua subterránea.

No se estima que exista ningún hábitat que esté en mal estado de conservación como consecuencia de un algo grado de extracción de aguas subterráneas.

3.2.2 Evaluación del estado químico

Al igual que con el estado cuantitativo, la metodología de evaluación empleada es, grosso modo, la recogida en la *Guía para la evaluación del estado de las aguas superficiales y subterráneas* (MITECO, 2020), en adelante Guía MITECO, que emplea los criterios descritos en la Guía N.º 18 de la Estrategia Común de Implementación de la DMA. De acuerdo con esta guía, la evaluación del estado de las masas de agua subterránea se llevará a cabo solo en aquellas masas en las que se haya establecido que existe un riesgo de no alcanzar los objetivos medioambientales. En los documentos iniciales consolidados publicados en julio de 2020 se identificaron 17 MSBT en riesgo de no alcanzar el buen estado químico (Tabla 22). El resto de las MSBT se clasifican automáticamente como en buen estado.

Código	Denominación	Naturaleza	Extensión (km²)
030.006	Guadalajara	Detrítica	1873
030.007	Aluviales Jarama-Tajuña	Detrítica aluvial	207
030.008	La Alcarria	Carbonatada	2553
030.011	Madrid: Guadarrama-Manzanares	Detrítica	896
030.012	Madrid: Aldea del Fresno-Guadarrama	Detrítica	574
030.013	Aluvial del Tajo: Zorita de los Canes-Aranjuez	Detrítica aluvial	202
030.015	Talavera	Detrítica	4330
030.016	Aluvial del Tajo: Toledo-Montearagón	Detrítica aluvial	216
030.017	Aluvial del Tajo: Aranjuez-Toledo	Detrítica aluvial	148
030.018	Ocaña	Carbonatada	928
030.019	Moraleja	Detrítica	213
030.020	Zarza de Granadilla	Detrítica	91
030.021	Galisteo	Detrítica	732
030.022	Tiétar	Detrítica	2092
030.024	Aluvial del Jarama: Guadalajara-Madrid	Detrítica aluvial	229
030.025	Algodor	Detrítica/carbonatada	1290
030.026	Sonseca	Alterita/plutónica	558

Tabla 22. Masas de agua subterráneas en riesgo de no alcanzar el buen estado químico.

Para la evaluación del estado se emplean los datos físico-químicos recogidos provenientes de las muestras tomadas en los puntos de la red de calidad de la Demarcación, durante el periodo de vigencia del Plan Hidrológico de cuenca, dentro de los programas de control operativo y de vigilancia, así como del programa de seguimiento de zonas protegidas en aquellas masas en las que dicho programa exista.

Esta metodología se basa en la aplicación de un máximo de cinco test, que abarcan, cada uno de ellos, los diferentes criterios establecidos por la definición de buen estado químico de las masas de agua subterránea. También se establece el nivel de confianza en este proceso de evaluación (NCF).

Los test a aplicar son los siguientes: Test 1 evaluación general del estado químico, Test 2 de salinización y otras intrusiones, Test 3 de masas de agua superficial asociadas a las aguas subterráneas, Test 4 de ecosistemas dependientes de las aguas subterráneas y Test 5 de zonas protegidas de abastecimiento. Todos ellos se han aplicado en esta demarcación hidrográfica.

En aquellas MSBT donde no exista un suficiente conocimiento del modelo conceptual de la MSBT o que debido a la falta de información no sea posible finalizar el test, como norma general el resultado del test será *Pasa el Test* y el NCF será bajo, de acuerdo con el criterio de la Guía MITECO.

Se calcula el promedio de los dos últimos años de los puntos de muestreo seleccionados y se comparará con la Norma de Calidad Ambiental (NCA) o Valor Umbral (VU) correspondiente en cada caso. Podrá emplearse el promedio de los 6 últimos años, cuando el modelo conceptual y los datos de control indiquen que es necesario evitar la influencia de las variaciones de calidad a corto plazo, que no sean indicativas de la repercusión real de las presiones en la MSBT.

La legislación establece que se deberán establecer valores umbral para aquellos contaminantes o sustancias responsables de que la masa de agua subterránea haya sido clasificada como en riesgo. Los valores umbral que se han utilizado para los diversos test establecidos en la Guía MITECO, han sido los ya establecidos en el anterior Plan Hidrológico de cuenca, conforme se estableció en el proyecto BRIDGE.

Asimismo, dentro de la Normativa del Plan hidrológico propuesto para el tercer ciclo de planificación, y en consonancia con el artículo 3.6 del Real Decreto 1514/2009, de 2 de octubre, por el que se regula la protección de las aguas subterráneas contra la contaminación y el deterioro, se han reducido el número de parámetros con valores umbral asignados al no constituir un riesgo de no alcanzar el buen estado químico.

. En las fichas de las masas de agua subterránea recogidas en el Apéndice 2 del Anejo 10 Objetivos medioambientales, se incluyen fichas con una caracterización de las masas de agua en riesgo, que incluyen los datos utilizados en la elaboración de cada test además de mapas, gráficos y otra información complementaria. En detalle, se identifican los hábitats ligados al agua presentes en los LIC y ZEC de la cuenca, analizando aquellos con un estado de conservación reducido y vinculados a masas de agua subterránea, así como aquellos hábitats vinculados a masas de agua superficial cuya escorrentía subterránea es significativa.

En cuanto a los espacios protegidos de la Red Natura 2000 donde se han localizado especies ligadas al medio hídrico con un estado de conservación reducido, no quedan recogidos en esas fichas, por un lado, debido a la elevada incertidumbre respecto a la relación entre dichas especies y las masas de agua subterránea, y por otro lado, porque ese estado de conservación reducido no podría atribuirse de manera directa a la calidad de las aguas subterráneas, dadas las numerosas presiones y amenazas existentes en dichos espacios protegidos.

3.2.2.1 Test 1 Evaluación general del estado químico

De carácter general en todas las MSBT declaradas en riesgo. Evalúa si el impacto de la contaminación en las aguas subterráneas está tan extendido que supone un deterioro significativo de la capacidad de la MSBT de soportar los usos humanos.

El Test se aplica para cada una de las sustancias responsables de que la MSBT se encuentre en riesgo de no alcanzar el buen estado químico (Tabla 23). Las MSBT en riesgo químico están asociadas a una presión difusa por agricultura. Las sustancias asociadas a esta presión son los nitratos y plaguicidas. También se ha evaluado el arsénico, a causa de posibles cambios del estado químico favorecidos por la extracción de aguas subterráneas, en las MSBT asociadas a formaciones detríticas terciarias: Guadalajara (030.006), Madrid: Guadarrama-Manzanares (030.011), Madrid: Aldea del Fresno-Guadarrama (030.012), Talavera (030.015) y Tiétar (030.022).

Asimismo, como medida de precaución, también se han realizado los test para el resto de sustancias y parámetros con valores umbral para estas MSBT presentes en la normativa del

Código	Denominación	Naturaleza	Presión
030.006	Guadalajara	Detrítica	Difusa (agricultura)
030.007	Aluviales Jarama-Tajuña	Detrítica aluvial	Difusa (agricultura)
030.008	La Alcarria	Carbonatada	Difusa (agricultura)
030.011	Madrid: Guadarrama-Manzanares	Detrítica	Difusa (agricultura)
050.011	iviauriu. Guauarrama-ivianzanares	Detritica	Extracciones
030.012	Madrid: Aldea del Fresno-	Detrítica	Difusa (agricultura)
030.012	Guadarrama	Detritica	Extracciones
030.013	Aluvial del Tajo: Zorita de los	Detrítica aluvial	Difusa (agricultura)
030.015	Canes-Aranjuez Talavera	Detrítica	Difusa (agricultura)
030.016	Aluvial del Tajo: Toledo- Montearagón	Detrítica aluvial	Difusa (agricultura)
030.017	Aluvial del Tajo: Aranjuez-Toledo	Detrítica aluvial	Difusa (agricultura)
030.018	Ocaña	Carbonatada	Difusa (agricultura) Extracciones
030.019	Moraleja	Detrítica	Difusa (agricultura)
030.020	Zarza de Granadilla	Detrítica	Difusa (agricultura)
030.021	Galisteo	Detrítica	Difusa (agricultura)
030.022	Tiétar	Detrítica	Difusa (agricultura)
030.024	Aluvial del Jarama: Guadalajara-	Detrítica aluvial	Difusa (agricultura)
030.024	Madrid	Detritica aluviai	Dirusa (agricuitura)
030.025	Algodor	Detrítica/carbonatada	Difusa (agricultura)
030.026	Sonseca	Alterita/detrítica	Difusa (agricultura)
030.020	Sonseca	Aiterita/detritica	Extracciones

Plan Vigente (2015-2021).

Tabla 23. Relación masa de agua subterránea en riesgo y presión por contaminación difusa

El procedimiento, para cualquiera de las sustancias es calcular su contenido promedio por punto, para el periodo 2018-2019, empleando para ello, a su vez, el promedio anual; y si se precisa de mayor serie temporal, se toman los datos del periodo 2015-2019 Si alguno de los

puntos supera la NCA o el VU establecido, se estima el alcance del incumplimiento en términos de porción del área de la MSBT, para cada sustancia, considerando para cada punto una superficie de afección. Si esta superficie es mayor del 20% se consideraría en mal estado, aunque si existen investigaciones adicionales que contradigan la significación de este incumplimiento, se considera que la MSBT "Pasa el test" y se le asigna un NCF medio, pues existen contradicciones entre las diferentes fuentes de información disponibles.

Asimismo, para aplicar el test se ha de disponer tanto de un número mínimo de puntos representativos de la red, considerándose como tal un número de tres, el recomendado en la Guía 15 Monitoring Guidance for Groundwater (2007) elaborada de para la DMA 2000/60/EC, como también una evolución temporal suficiente. Según la Guía MITECO, en aquellas MSBT donde no exista un suficiente conocimiento del modelo conceptual de la MSBT o que debido a la falta de información no sea posible finalizar el test, como norma general se considerará que el resultado del test es "Pasa el Test" y el NCF será Bajo. Esta insuficiencia de información ocurre con las MSBT Aluvial del Tajo: Toledo-Montearagón (030.016), Aluvial del Tajo: Aranjuez-Toledo (030.017), Algodor (030.025) y Sonseca (030.026).

		% s	superficie con inc	umplimiento	RESULTADO	NCF
Código	Denominación	NO3	Plaguicidas	Otras sustancias		
030.006	Guadalajara	0	0	0	PASA	ALTO
030.007	Aluviales Jarama-Tajuña	0	0	0	PASA	ALTO
030.008	La Alcarria	20	0	0	PASA	ALTO
030.011	Madrid: Guadarrama- Manzanares	0	0	0	PASA	ALTO
030.012	Madrid: Aldea del Fresno-Guadarrama	0	0	0	PASA	ALTO
030.013	Aluvial del Tajo: Zorita de los Canes-Aranjuez	20	0	0	PASA	ALTO
030.015	Talavera	14	0	0	PASA	ALTO
030.016	Aluvial del Tajo: Toledo- Montearagón		0	0	PASA	BAJO
030.017	Aluvial del Tajo: Aranjuez-Toledo		0	0	PASA	BAJO
030.018	Ocaña	83	0	0	NO PASA	ALTO
030.019	Moraleja	0	0	0	PASA	ALTO
030.020	Zarza de Granadilla	0	0	0	PASA	ALTO
030.021	Galisteo	0	0	0	PASA	ALTO
030.022	Tiétar	0	0	17 (Mn)	PASA	ALTO
030.024	Aluvial del Jarama: Guadalajara-Madrid	0	0	0	PASA	ALTO
030.025	Algodor				PASA	BAJO
030.026	Sonseca				PASA	BAJO

Tabla 24. Relación de masas de agua y resultados del test 1

En las MSBT La Alcarria (030.008), Aluvial del Tajo: Zorita de los Canes-Aranjuez (030.013) y Talavera (030.015) existe un % de superficie de incumplimiento por nitratos, que no supera el 20 %. Ello solo se observa en Ocaña (030.018) donde la superficie afectada supera el 80 %. En cuanto a superficie de incumplimientos de otras sustancias, en el caso de la masa Tiétar

(030.022) hay presencia de Mn, aunque no supera el 20 % de la superficie. Asimismo, debe evaluarse el origen de dicho metal en las aguas, por cuanto podría ser un problema local asociado al propio punto de muestreo.

En la MSBT Aluvial del Tajo: Toledo-Montearagón (030.016) no se dispone de punto representativo de red de control oficial de la Confederación. Las MSPF relacionadas con la MSBT presentan contenidos medios en torno a 27-37,4 mg/l de nitratos. Considerando las estaciones de control de aguas superficiales, en el rio Tajo, 222 y 223, situadas a la entrada y la salida de la MSBT y considerando que existirá una descarga del acuífero al río, muestran unos contenidos medios similares en ambos para el periodo 2015-19, en torno a 20-28 mg/l, lo que parece evidenciar es que no existe un aporte destacable de nitratos procedentes de la MSBT. Considerando lo indicado en la Guía MITECO, se considera que la MSBT "pasa el test" con nivel de confianza bajo.

En la MSBT Aluvial del Tajo: Aranjuez-Toledo (030.017), se dispone de un punto representativo de red de control oficial de la Confederación. Para una valoración adecuada se precisaría de un mínimo de tres puntos. La media para el periodo 2015-29 en este punto es de 3 mg/L de nitratos. Considerando lo indicado en la Guía MITECO se considera que la MSBT "pasa el test" con nivel de confianza bajo.

Respecto a las nuevas masas definidas no han dispuesto de red de control oficial por parte de la Confederación. La MSBT Algodor (030.025), a partir de análisis realizados por la CHT en la zona, se han observado contenidos en nitratos medios para los distintos acuíferos entre 20 y 40 mg/l, aunque se precisa de un seguimiento de su evolución temporal en una adecuada red de control. En cuanto a la MSBT Sonseca (030.026), a partir de análisis realizados por la CHT en la zona, se ha observado en su parte oriental contenidos en torno a 20-40 mg/l, aunque se precisa de un seguimiento de su evolución temporal en una adecuada red de control. Considerando lo indicado en la Guía MITECO se considera que ambas MSBT "pasan el test" con nivel de confianza bajo.

Respecto a la presencia de plaguicidas, se han observado, en la MSBT Aluviales Jarama-Tajuña (030.007) algún dato puntual que superaba el límite. No obstante, como esto no se ha producido en el periodo 2018-19 y, por tanto, no ha tenido continuidad, no se ha considerado significativo y se ha estimado que no hay incumplimiento en la MSBT.

3.2.2.2 Test 2 de salinización y otras intrusiones

Este test se realiza cuando se cumplen los siguientes supuestos 1) presión por extracciones o un impacto por contaminación salina; 2) posibles fuentes de salinización, como pueden ser las formaciones geológicas salinas.

En la Demarcación, las masas Aluvial del Tajo: Aranjuez-Toledo (030.017) y Ocaña (030.018) tienen unos valores umbral de conductividad y/o cloruros atribuibles a formaciones geológicas, por lo que, aunque no presentan una presión por extracciones, se ha aplicado, de manera preventiva, el test 2. Para la 030.017 se dispone de un único punto, por lo que se aplica lo descrito en el anterior test en cuanto al nº de puntos necesarios para la evaluación, con unos contenidos, por otra parte, atribuibles a origen natural, y para la segunda no se superan los valores umbral siendo su tendencia predominante no ascendente.

Código	Denominación	% superficie	Tendencia contenido químico	RESULTADO	NCF
030.017	Aluvial del Tajo: Aranjuez- Toledo			PASA	BAJO
030.018	Ocaña	0	Predomina no ascendente	PASA	ALTO

Tabla 25. Resultado test 2

3.2.2.3 Test 3 de masas de agua superficiales asociadas a las aguas subterráneas

Con este test se busca establecer en qué medida la transferencia de contaminantes procedentes de las aguas subterráneas hacia las masas de aguas superficial es suficiente para amenazar los objetivos de la DMA para estas aguas superficiales asociadas, por lo que la aplicación de este test parte de la hipótesis de que el río debe tener un régimen ganador o variable.

Asimismo, también se evaluará la afección a los ecosistemas dependientes de estas MSPF.

Este test se lleva a cabo en MSPF asociadas a MSBT y siempre que las MSPF estén en mal estado. Este test se realiza de manera individualizada para cada MSPF asociada y para todas las sustancias causantes del mal estado ecológico o químico de dicha MSPF.

Dentro del estado ecológico de las MSPF se considera que el único parámetro asociable a las aguas subterráneas es el contenido en nitratos, así que se tomarán las MSPF cuyo contenido en nitratos sea peor que bueno. Respecto al estado químico de las MSPF, las sustancias prioritarias (anexo IV del RD 817/2015) no se han detectado en las MSBT.

Las MSPF asociadas a las aguas subterráneas se recogen en la Tabla 26 . Aplicando la Guía MITECO y la *Guía nº 18 sobre el estado de las aguas subterráneas y la evaluación de tendencias* (CEE, 2009) se interpreta que el Valor Umbral a aplicar, para el caso de los nitratos, es el correspondiente a la NCA para las aguas subterráneas, que es un contenido de 50 mg/L. Si se supera este contenido se aplica el test y se estimaría el porcentaje de transferencia de las aguas subterráneas a las superficiales.

Para su estimación se ha empleado la media del contenido en nitratos de los dos últimos años (2018 y 2019) para los puntos de la red de calidad más próximos, o bien la media de la MSBT cuando no existían puntos próximos. También se han descartado las MSPF cuyo tramo en la MSBT es muy reducido y se ha considerado no significativo.

Únicamente en el caso de la masa de agua Río Ungría hasta río Tajuña (MSPF0205010), con vinculación con la MSBT La Alcarria (030.008) se puede considerar que la transferencia puede superar el 50 % y considerar que "no pasa" el test.

Cod_ MSBT	Nom_MSBT	Cod_MSPF	Nom_MSPF	calidaBIO	Nitratos	Amonio	Fosfatos	Incumplimientos preferentes	calidadFQ	calidadHMF	estadoEco	Estado Químico
030.006	Guadalajara	ES030MSPF0330040	Lagunas Grande de Beleña y Chica de Beleña	DEFICIENTE			MODERADO		MODERADA		DEFICIENTE	BUENO
030.007	Aluviales Jarama- Tajuña	ES030MSPF0416021	Río Jarama desde Río Tajuña hasta Río Tajo	DEFICIENTE	MODERADO	MODERADO	MODERADO		PEOR QUE BUENA	PEOR QUE MUY BUENA	DEFICIENTE	BUENO
030.008	La Alcarria	ES030MSPF0121110	Arroyo de la Vega		MODERADO	MUY BUENO	MUY BUENO		PEOR QUE BUENA		MODERADO	BUENO
030.008	La Alcarria	ES030MSPF0205010	Río Ungría hasta Río Tajuña	BUENA	MODERADO	MUY BUENO	BUENO		PEOR QUE BUENA	MUY BUENA	MODERADO	BUENO
030.011	Madrid: Guadarrama- Manzanares	ES030MSPF0402010	Río Guadarrama desde Río Aulencia hasta Bargas	DEFICIENTE	MODERADO	MODERADO	MODERADO		PEOR QUE BUENA	MUY BUENA	DEFICIENTE	MALO
030.011	Madrid: Guadarrama- Manzanares	ES030MSPF0403110	Río Guadarrama desde Galapagar hasta Río Aulencia	DEFICIENTE	MODERADO	MODERADO	MODERADO		PEOR QUE BUENA	PEOR QUE MUY BUENA	DEFICIENTE	BUENO
030.011	Madrid: Guadarrama- Manzanares	ES030MSPF0403310	Río Guadarrama desde Embalse de Las Nieves hasta Embalse Molino de la Hoz		MODERADO	MUY BUENO	MUY BUENO		PEOR QUE BUENA		DEFICIENTE	MALO
030.011	Madrid: Guada- rrama-Manzanares	ES030MSPF0434021	Arroyo del Culebro	DEFICIENTE	MODERADO	BUENO	MODERADO		PEOR QUE BUENA	PEOR QUE MUY BUENA	MODERADO	BUENO
030.012	Madrid: Aldea del Fresno- Guadarrama	ES030MSPF0402010	Río Guadarrama desde Río Aulencia hasta Bargas	DEFICIENTE	MODERADO	MODERADO	MODERADO		PEOR QUE BUENA	MUY BUENA	DEFICIENTE	MALO
030.012	Madrid: Aldea del Fresno- Guadarrama	ES030MSPF0403110	Río Guadarrama desde Galapagar hasta Río Aulencia	DEFICIENTE	MODERADO	MODERADO	MODERADO		PEOR QUE BUENA	PEOR QUE MUY BUENA	DEFICIENTE	BUENO
030.012	Madrid: Aldea del Fresno- Guadarrama	ES030MSPF0403310	Río Guadarrama desde Embalse de Las Nieves hasta Embalse Molino de la Hoz		MODERADO	MUY BUENO	MUY BUENO		PEOR QUE BUENA		MODERADO	BUENO
030.014	Entrepeñas	ES030MSPF0121110	Arroyo de la Vega		MODERADO	MUY BUENO	MUY BUENO		PEOR QUE BUENA		MODERADO	BUENO

Cod_ MSBT	Nom_MSBT	Cod_MSPF	Nom_MSPF	calidaBIO	Nitratos	Amonio	Fosfatos	Incumplimientos preferentes	calidadFQ	calidadHMF	estadoEco	Estado Químico
030.015	Talavera	ES030MSPF0401010	Río Guadarrama desde Bargas hasta Río Tajo	DEFICIENTE	MODERADO	BUENO	MODERADO		PEOR QUE BUENA	PEOR QUE MUY BUENA	DEFICIENTE	BUENO
030.015	Talavera	ES030MSPF0401110	Arroyo de Vallehermoso		MODERADO	MUY BUENO	MODERADO		PEOR QUE BUENA		MODERADO	BUENO
030.015	Talavera	ES030MSPF0402010	Río Guadarrama desde Río Aulencia hasta Bargas	DEFICIENTE	MODERADO	MODERADO	MODERADO		PEOR QUE BUENA	MUY BUENA	DEFICIENTE	MALO
030.015	Talavera	ES030MSPF0619010	Arroyo de las Cuevas hasta Río Tajo	BUENA	MODERADO	MUY BUENO	MODERADO		PEOR QUE BUENA	MUY BUENA	MODERADO	BUENO
030.015	Talavera	ES030MSPF0632010	Arroyo Barcience hasta Embalse de Castrejón		MODERADO	MODERADO	MODERADO		PEOR QUE BUENA		MODERADO	BUENO
030.016	Aluvial del Tajo: Toledo- Montearagón	ES030MSPF0401010	Río Guadarrama desde Bargas hasta Río Tajo	DEFICIENTE	MODERADO	BUENO	MODERADO		PEOR QUE BUENA	PEOR QUE MUY BUENA	DEFICIENTE	BUENO
030.016	Aluvial del Tajo: Toledo- Montearagón	ES030MSPF0606021	Río Tajo desde Río Guadarrama hasta Embalse de Castrejón	MODERADA	MODERADO	MODERADO	MODERADO		PEOR QUE BUENA	PEOR QUE MUY BUENA	MODERADO	BUENO
030.016	Aluvial del Tajo: Toledo- Montearagón	ES030MSPF0632010	Arroyo Barcience hasta Embalse de Castrejón		MODERADO	MODERADO	MODERADO		PEOR QUE BUENA		MODERADO	BUENO
030.017	Aluvial del Tajo: Aranjuez-Toledo	ES030MSPF0622021	Río Algodor desde Embalse de El Castro hasta Río Tajo	MODERADA	MODERADO	MUY BUENO	MUY BUENO	SELENIO	PEOR QUE BUENA	PEOR QUE MUY BUENA	MODERADO	BUENO
030.025	Algodor	ES030MSPF0622021	Río Algodor desde Embalse de El Castro hasta Río Tajo	MODERADA	MODERADO	MUY BUENO	MUY BUENO	SELENIO	PEOR QUE BUENA	PEOR QUE MUY BUENA	MODERADO	BUENO
030.026	Sonseca	ES030MSPF0622021	Río Algodor desde Embalse de El Castro hasta Río Tajo	MODERADA	MODERADO	MUY BUENO	MUY BUENO	SELENIO	PEOR QUE BUENA	PEOR QUE MUY BUENA	MODERADO	BUENO

Tabla 26. Masas de agua superficial que incumplen el contenido en nitratos, con su MSBT asociada.

Cod_ MSBT	Nom_MSBT	Cod_MSPF	Nom_MSPF	Puntos red	Media NO₃ 2018, 2019	VU	Obsvervaciones.	RESULTADO	NCF
030.006	Guadalajara	ES030MSPF03300 40	Lagunas Grande de Beleña y Chica de Beleña	Todos	15	50	Se emplea el contenido medio de toda la MSBT	PASA	ALTO
030.007	Aluviales Jarama- Tajuña	ES030MSPF04160 21	Río Jarama desde Río Tajuña hasta Río Tajo	Todos	37	50	Se emplea el contenido medio de toda la MSBT.	PASA	ALTO
		ES030MSPF01211 10	Arroyo de la Vega	08-22, 4043	26	50		PASA	ALTO
030.008	La Alcarria	ES030MSPF02050 10	Río Ungría hasta Río Tajuña	08-08,08-34, 08-35	54	50	La transferencia de aguas subterráneas a superficiales puede superar el 50 % (en torno a 54 %)	NO PASA	MEDIO
		ES030MSPF04020 10	Río Guadarrama desde Río Aulencia hasta Bargas	11-14 11-18	18	50		PASA	ALTO
020 011	Madrid:	ES030MSPF04031 10	Río Guadarrama desde Galapagar hasta Río Aulencia	11-06 11-17	17	50		PASA	ALTO
030.011	Guadarrama- Manzanares	ES030MSPF04033 10	Río Guadarrama desde Embalse de Las Nieves hasta Embalse Molino de la Hoz			50	Tramo no significativo		
		ES030MSPF04340 21	Arroyo del Culebro	Todos	22	50	Se emplea el contenido medio de toda la MSBT	PASA	MEDIO
		ES030MSPF04020 10	Río Guadarrama desde Río Aulencia hasta Bargas	12-11 12-12	35	50		PASA	ALTO
030.012	Madrid: Aldea del Fresno-Guadarrama	ES030MSPF04031 10	Río Guadarrama desde Galapagar hasta Río Aulencia	12-13	10	50		PASA	ALTO
		ES030MSPF04033 10	Río Guadarrama desde Embalse de Las Nieves hasta Embalse Molino de la Hoz			50	Tramo no significativo		
030.014	Entrepeñas	ES030MSPF01211 10	Arroyo de la Vega			50	MSBT buen estado	PASA	ALTO
		ES030MSPF04010 10	Río Guadarrama desde Bargas hasta Río Tajo	15-44 15-45	16	50	Asociado a ZR Sagra	PASA	ALTO
030.045	Talassana	ES030MSPF04011 10	Arroyo de Vallehermoso	15-44 15-45	16	50	Asociado a ZR Sagra	PASA	ALTO
030.015	Talavera	ES030MSPF04020 10	Río Guadarrama desde Río Aulencia hasta Bargas	15-37	16	50		PASA	ALTO
		ES030MSPF06190 10	Arroyo de las Cuevas hasta Río Tajo	Todos	26	50	Se emplea el contenido medio de toda la MSBT.	PASA	MEDIO

Cod_ MSBT	Nom_MSBT	Cod_MSPF	Nom_MSPF	Puntos red	Media NO₃ 2018, 2019	VU	Obsvervaciones.	RESULTADO	NCF
		ES030MSPF06320 10	Arroyo Barcience hasta Embalse de Castrejón	Todos	26	50	Se emplea el contenido medio de toda la MSBTAsociado a ZR Sagra	PASA	MEDIO
		ES030MSPF04010 10	Río Guadarrama desde Bargas hasta Río Tajo			50	Tramo poco significativo		
030.016	Aluvial del Tajo: Toledo-	ES030MSPF06060 21	Río Tajo desde Río Guadarrama hasta Embalse de Castrejón			50	No se dispone de puntos de la red. Se considera que la afección. asociada a Regadíos Castrejón	PASA	BAJO
030.016	Montearagón	ES030MSPF06320 10	Arroyo Barcience hasta Embalse de Castrejón			50	No se dispone de puntos de la red. Se considera afección asociada a ZR Sagra y Regadíos Jarama- Castrejón Tramo poco significativo	PASA	BAJO
030.017	Aluvial del Tajo: Aranjuez-Toledo	ES030MSPF06220 21	Río Algodor desde Embalse de El Castro hasta Río Tajo			50	No se dispone de puntos de la red. Tramo poco significativo No se considera afección.	PASA	BAJO
030.025	Algodor	ES030MSPF06220 21	Río Algodor desde Embalse de El Castro hasta Río Tajo			50	No se dispone de red. No se considera afección.	PASA	BAJO
030.026	Sonseca	ES030MSPF06220 21	Río Algodor desde Embalse de El Castro hasta Río Tajo			50	No se dispone de red. No se considera afección.	PASA	BAJO

Tabla 27. Resultados de la aplicación del test 3 (media NO₃ 2018-19 y VU son mg/L NO₃).

En cuanto a los tipos de hábitat de interés comunitario (THIC) asociados al medio hídrico, que son representativos y no alcanzan el buen estado de conservación, asociándose a masas de agua superficial vinculadas con masas de agua subterránea, aparecen: Lagos eutróficos naturales con vegetación Magnopotamion o Hydrocharition (3150), Estanques temporales mediterráneos (3170), Ríos mediterráneos de caudal permanente con Glaucium flavum (3250), Prados húmedos mediterráneos de hierbas altas del Molinion-Holoschoenion (6420), Megaforbios eutrofos hidrófilos de las orlas de llanura y de los pisos montano a alpino (6430), Fresnedas termófilas de Fraxinus angustifolia (9180), Bosques galería de Salix alba y Populus alba (92A0), Galerías y matorrales ribereños termomediterráneos (92D0), etc. y se distribuyen entre cinco MSBT (Tabla 28).

COD_R N	THIC	Nom THIC	MSPF	Nom_MSPF	Cod_MSBT Nom_MSBT
ES3110 001	3250	Ríos mediterráneos de caudal permanente con Glaucium flavum	ES030MS PF03020 10	Río Henares desde Arroyo del Sotillo hasta Arroyo de Torote	
ES4240 003	92D0	Galerías y matorrales ribereños termomediterráneos (Nerio- Tamaricetea y Securinegion tinctoriae)	ES030MS PF03030 10	Río Henares desde Río Badiel hasta Barranco del Alamín	030.006
ES4240 003	92D0	Galerías y matorrales ribereños termomediterráneos (Nerio- Tamaricetea y Securinegion tinctoriae)	ES030MS PF03040 10	Río Henares desde Canal del Henares hasta Río Badiel	Guadalajara
ES4240 003	92D0	Galerías y matorrales ribereños termomediterráneos (Nerio- Tamaricetea y Securinegion tinctoriae)	ES030MS PF03060 10	Río Henares desde Río Bornova hasta Río Sorbe	
ES4240 003	92D0	Galerías y matorrales ribereños termomediterráneos (Nerio- Tamaricetea y Securinegion tinctoriae)	ES030MS PF03070 10	Río Henares desde Río Cañamares hasta Río Bornova	
ES4240 003	92D0	Galerías y matorrales ribereños termomediterráneos (Nerio- Tamaricetea y Securinegion tinctoriae)	ES030MS PF03130 10	Arroyo de las Dueñas hasta Río Henares	
ES4240 003	92D0	Galerías y matorrales ribereños termomediterráneos (Nerio- Tamaricetea y Securinegion tinctoriae)	ES030MS PF03200 11	Río Bornova desde Embalse de Alcorlo hasta Río Henares	
ES4240 005	3150	Lagos eutróficos naturales con vegetación Magnopotamion o Hydrocharition	ES030MS PF03300 40	Lagunas de Puebla de Beleña	
ES4240 005	3170	Estanques temporales mediterráneos	ES030MS PF03300 40	Lagunas de Puebla de Beleña	
ES3110	3250	Ríos mediterráneos de caudal	ES030MS PF03020 10	Río Henares desde el Arroyo del Sotillo hasta Arroyo de Torote	
001	3230	permanente con Glaucium flavum	ES030MS PF04220 21	Río Jarama desde Río Lozoya hasta Río Guadalix	030.024
ES3110 003	6420	Prados húmedos mediterráneos de hierbas altas del Molinion- Holoschoenion	ES030MS PF04410	Río Guadalix desde Embalse de Pedrezuela hasta Río	Aluvial del Jarama: Guadalajara-Madrid
ES3110 003	92A0	Bosques galería de Salix alba y Populus alba	21	Jarama	
ES4250 003	92A0	Bosques galería de Salix alba y Populus alba	ES030MS PF06030 21	Río Tajo en la confluencia con el Río Alberche Río Tajo en la confluencia con el Río Alberche	030.015 Talavera 030.016 Aluvial del Tajo: Toledo-

COD_R N	THIC	Nom THIC	MSPF	Nom_MSPF	Cod_MSBT Nom_MSBT
					Montearagón
ES4250 009	6430	Megaforbios eutrofos hidrófilos de las orlas de llanura y de los pisos montano a alpino.	ES030MS PF06272 10	Arroyo de Martín Román hasta Arroyo de la Madre	030.018 Ocaña
ES0000 168	92A0	Bosques galería de Salix alba y Populus alba	ES030MS	Cabecera del Arroyo de	030.022
ES0000 168	6420	Prados húmedos mediterráneos de hierbas altas del Molinion- Holoschoenion	PF07182 10	Fresnedoso	Tiétar
ES0000 168	6420	Prados húmedos mediterráneos de hierbas altas del Molinion- Holoschoenion	ES030MS PF07231	Arroyo de Alcañizo y otros hasta Río Tiétar	
ES0000 168	9180	Fresnedas termófilas de Fraxinus angustifolia	10	Hasta NIO Hetal	

Tabla 28. Distribución de los tipos de hábitat que son representativos y no alcanzan el buen estado de conservación señalados por EDAS en MSPF vinculadas a MSBT

Para valorar su estado se ha comprobado si el estado de la MSPF a la que está asociada está evaluado como "peor que bueno" y en ese caso, si la valoración de nitratos es peor que buena (Tabla 29. Para cada hábitat se observa que ninguna de las masas de agua superficial a las que se asocia, están en mal estado por la concentración de nitratos, por lo que se considera que todas las masas de agua subterránea pasan el test.

El ZEC-LIC ES4240005 Lagunas de Puebla de Beleña, está asociado a la MSPF ES030MSPF0330040 Lagunas Grande de Beleña y Chica de Beleña. Su estado ecológico es deficiente y puede atribuirse al fósforo total. Según la información existente (*Plan de Gestión de LAGUNAS DE PUEBLA DE BELEÑA, ES4240005 (Guadalajara) Documento 1: Diagnóstico del Espacio Natura 2000*), la alimentación de este humedal se realiza fundamentalmente por agua de lluvia con aportaciones variables del acuífero local cuaternario. Los contenidos en nitratos de las aguas de estas lagunas muestran contenidos inferiores a 5 mg/l (años 2016 y 2018), por lo que se considera que no existe una afección significativa procedente de las aguas subterráneas o atribuibles a ellas.

COD_RN	Código MSPF	Denominación MSPF	Cod_MSBT Nom_MSBT	MSPF Nitratos
ES3110001	ES030MSPF030	Río Henares desde el Arroyo del		NITRATO
E33110001	2010	Sotillo hasta Arroyo de Torote		S BUENO
FC4240002	ES030MSPF030	Río Henares desde Río Badiel		NITRATO
ES4240003	3010	hasta Barranco del Alamín		S BUENO
FC4240002	ES030MSPF030	Río Henares desde Canal del		NITRATO
ES4240003	4010	Henares hasta Río Badiel		S BUENO
FC4240002	ES030MSPF030	Río Henares desde Río Bornova	030.006	NITRATO
ES4240003	6010	hasta Río Sorbe	Guadalajara	S BUENO
ES4240003	ES030MSPF030	Río Henares desde Río		NITRATO
E54240003	7010	Cañamares hasta Río Bornova		S BUENO
ES4240003	ES030MSPF031	Arroyo de las Dueñas hasta Río		NITRATO
E34240003	3010	Henares		S BUENO
EC4240002	ES030MSPF032	Río Bornova desde Embalse de		NITRATO
ES4240003	0011	Alcorlo hasta Río Henares		S MUY

COD_RN	Código MSPF	Denominación MSPF	Cod_MSBT Nom_MSBT	MSPF Nitratos
				BUENO
ES4240005	ES030MSPF033 0040	Lagunas Grande de Beleña y Chica de Beleña		-
ES3110001	ES030MSPF042 2021	Río Jarama desde Río Lozoya hasta Río Guadalix	030.024 Aluvial del Jarama: Guadalajara-Madrid	NITRATO S MUY BUENO
ES4250003	ES030MSPF060 3021	Río Tajo en la confluencia con el Río Alberche	030.015 Talavera 030.016 Aluvial del Tajo: Toledo- Montearagón	NITRATO S BUENO NITRATO S BUENO
ES4250009	ES030MSPF062 7210	Arroyo de Martín Román hasta Arroyo de la Madre	030.018 Ocaña	NITRATO S BUENO
ES0000168	ES030MSPF071 8210 ES030MSPF072 3110	Cabecera del Arroyo de Fresnedoso Arroyo de Alcañizo y otros hasta Río Tiétar	030.022 Tiétar	NITRATO S MUY BUENO NITRATO S MUY BUENO

Tabla 29. Resultado de la aplicación del test 3

3.2.2.4 Test 4 de ecosistemas dependientes de las aguas subterráneas

El test está diseñado para evaluar si existe un daño significativo a los ecosistemas dependientes de las aguas subterráneas (EDAS) relacionados con las MSBT, causado por la concentración de contaminantes en las aguas subterráneas, cuando estos EDAS no tengan una vinculación con MSPF, pues en ese caso ya se han analizado en test 3.

Este test se realiza de manera individualizada para cada tipo de hábitat de interés comunitario (THIC) asociado al medio hídrico, cuando sea representativo y no alcance el buen estado de conservación, y se presuma que existe relación con las aguas subterráneas por presentarse en zonas con un nivel piezométrico somero. Puesto que no se conoce cuáles son las sustancias responsables de que el hábitat esté en un estado de conservación reducido, el test se aplicaría para las sustancias responsables de que la MSBT se encuentre en riesgo de no alcanzar el buen estado químico: nitratos.

Se han identificado 5 LIC-ZEC con hábitats en un estado de conservación reducido, asociados con masas de agua subterránea en riesgo. La única zona con una amenaza descrita en SPAINCNTRYES como contaminación de aguas subterráneas es la ZEC Cuenca del rio Guadalix (ES3110003), en la MSBT Torrelaguna (030.004) (Tabla 30). Aunque esta masa no presenta riesgo químico sino cuantitativo y no sería obligatorio realizar el test, se ha evaluado que los contenidos en nitratos son muy bajos (9,1 g/L de promedio del periodo 2015-2019) e inferiores al límite de cambio de clase de estado para aguas de río, 25 mg/l NO₃, establecido en el Anexo II del RD 817/2015 (RDSE) y al Valor umbral considerado de 50 mg/L, por lo que se considera que la MSBT no puede ser la responsable del estado de conservación del hábitat.

Con respecto al resto de LIC-ZEC con hábitats en un estado de conservación reducido, asociados con masas de agua subterránea en riesgo de mal estado químico, las amenazas descritas en SPAINCNTRYES son más generales, asociadas a las aguas en general y algunas no específicamente a la hidroquímica. Se evaluará si se ha superado un VU en algún punto de muestreo situado en una zona desde la cual exista un flujo probable hacia el EDAS.

De estas MSBT hay varias de ellas que no presentan, según el test 1 correspondiente a la evaluación general del estado químico, incumplimientos de nitratos (030.006, 030.022 y 030.024) y no superan los límites mencionados anteriormente. En cuanto al ZEC-LIC asociado a la masa 030.018, ésta supera el valor umbral de 50 mg/L y se considera que no cumple el test.

Espacio	NombreEspacio	THIC	NombreTHIC	MSBT asociada	Amenaza	Contenido medio NO3 masa o punto próximo (2015-19)	CONCLUSIÓN	NCF
ES3110003	Cuenca del río Guadalix	6420	Prados húmedos mediterráneos de hierbas altas del Molinion- Holoschoenion	Torrelaguna (030.004)	Contaminación de aguas subterráneas (fuentes puntuales y fuentes difusas)	9,1	PASA	ALTO
ES3110001	Cuencas de los ríos Jarama y Henares	3250	Ríos mediterráneos de caudal permanente con Glaucium flavum	Aluvial del Jarama: Guadalajara- Madrid (030.024)	Regadío Uso de fertilizantes Uso de biocidas, hormonas y productos químicos	22,0	PASA	ALTO
	Llanuras de Oropesa,	6420	Prados húmedos mediterráneos de hierbas altas del Molinion- Holoschoenion	n- Tiétar	Uso de fertilizantes Eliminación de residuos domésticos y provenientes de instalaciones			
ES0000168 Lagartera y	92A0	Bosques galería de Salix alba y Populus alba	(030.022)	recreativas Uso de biocidas, hormonas y productos químicos	5,7	PASA	ALTO	
ES4240003	Riberas del Henares	92D0	Galerías y matorrales ribereños termomediterráneos (Nerio- Tamaricetea y Securinegion tinctoriae)	Guadalajara (030.006)	Extracción de arena y grava Alteraciones en la dinámica y flujo del agua, general Regadío Uso de biocidas, hormonas y productos químicos	14,6	PASA	ALTO
ES4250009	Yesares del valle del Tajo	6430	Megaforbios eutrofos hidrófilos de las orlas de llanura y de los pisos montano a alpino.	Ocaña (030.018)	Pastoreo Residuos	70,9	NO PASA	ALTO

Tabla 30. Resultado de la aplicación del test 4.

3.2.2.5. Test 5 de Zonas protegidas por captación de aguas de consumo (ZPAC)

Se realiza a las zonas protegidas por captación de aguas de consumo (ZPAC) vinculadas a la MSBT, y para cada una de las sustancias responsables de que la MSBT se encuentre en riesgo de no alcanzar el buen estado químico. El objeto del test no es evaluar la potabilidad del agua, algo que corresponde a las autoridades sanitarias, sino ver si se está produciendo un deterioro de la calidad de las aguas debido a la actividad humana, lo que motivaría una necesidad de incrementar los tratamientos de potabilización.

Se han identificado las ZPAC vinculadas con la MSBT y las sustancias responsables de que la MSBT se encuentre en riesgo de no alcanzar el buen estado químico, que corresponden, como ya se indicó, a nitratos, plaguicidas y arsénico (limitado a las MSBT 030.006, 030.011, 030.012, 030.015 y 030.022), realizándose un test por cada una de las sustancias (Tabla 31). No obstante, como medida de precaución, se han considerado las otras sustancias presentes y que tienen descritas un valor umbral en el Plan 2015-2021 (hierro, fluoruros, sulfatos) realizándose los test en las MSBT correspondientes.

Las MSBT en riesgo pero que no tienen asociados ZPAC no se han contemplado en el test al igual que las MSBT de nueva creación (Algodor y Sonseca), de las que no hay información continuada.

	ESTACIONES QUE INCUMPLEN						
Código	Denominación	Nº ZPAC	NO₃	Plagui- cidas	As y otros	RESULTADO	NCF
030.006	Guadalajara	4	0	0	0	PASA	ALTO
030.008	La Alcarria	7	5	0	0	NO PASA	ALTO
030.015	Talavera	1	0	0	0	PASA	ALTO
030.018	Ocaña	3	3	0	0	NO PASA	ALTO
030.021	Galisteo	5	0	0	0	PASA	ALTO
030.022	Tiétar	3	0	0	0	PASA	ALTO

Tabla 31. Resultados de la aplicación del test 5.

4. Estado de las masas de agua

4.1 Resumen del estado de las masas de agua superficial

Tras la aplicación de la metodología descrita en los apartados anteriores se han obtenido los siguientes resultados relativos al estado de las masas de agua superficial.

Código	Masa de agua	Estado/ Potencial ecológico	Estado químico	Estado final
ES030MSPF0101021	Río Tajo en Aranjuez	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0102021	Río Tajo desde Arroyo del Álamo hasta Azud del Embocador	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0103021	Río Tajo desde Embalse de Estremera hasta Arroyo del Álamo	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0104020	Embalse de Estremera	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0105021	Río Tajo desde Embalse de Almoguera hasta Embalse de Estremera	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0106020	Embalse de Almoguera	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0107021	Río Tajo desde Embalse Zorita hasta Embalse de Almoguera	DEFICIENTE	BUENO	PEOR QUE BUENO
ES030MSPF0108020	Embalse de Zorita	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0109020	Embalse de Bolarque	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0110020	Embalse de Entrepeñas	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0111010	Río Tajo desde Río Ablanquejo hasta Embalse de Entrepeñas	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0112010	Río Tajo desde Arroyo de la Fuentecilla hasta Río Ablanquejo	MUY BUENO	BUENO	BUENO O MEJOR
ES030MSPF0113010	Río Tajo desde Río Gallo hasta Arroyo de la Fuentecilla	MUY BUENO	BUENO	BUENO O MEJOR
ES030MSPF0114010	Río Tajo desde Arroyo Tajuelo hasta Río Gallo	MUY BUENO	BUENO	BUENO O MEJOR
ES030MSPF0115110	Río Tajo desde su nacimiento hasta Arroyo Tajuelo	MUY BUENO	BUENO	BUENO O MEJOR
ES030MSPF0115210	Río de la Hoz Seca hasta Río Tajo	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0116010	Arroyo Salado hasta Río Tajo	DEFICIENTE	BUENO	PEOR QUE BUENO
ES030MSPF0117010	Río Calvache hasta Río Tajo	DEFICIENTE	BUENO	PEOR QUE BUENO
ES030MSPF0118010	Arroyo de la Vega hasta Río Tajo	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0119010	Arroyo de Ompolveda hasta Embalse de Entrepeñas	MUY BUENO	BUENO	BUENO O MEJOR
ES030MSPF0120010	Arroyo de la Solana hasta Embalse de Entrepeñas	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0121010	Barranco Grande hasta Embalse de Entrepeñas	MODERADO	BUENO	PEOR QUE BUENO

Código	Masa de agua	Estado/ Potencial ecológico	Estado químico	Estado final
ES030MSPF0121110	Arroyo de la Vega	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0122010	Río Cifuentes hasta Río Tajo	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0123010	Arroyo del Estrecho hasta Río Tajo	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0124010	Arroyo de la Rambla hasta Río Tajo	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0125010	Barranco de la Hoz hasta Río Tajo	DEFICIENTE	BUENO	PEOR QUE BUENO
ES030MSPF0126010	Río Ablanquejo hasta Río Tajo	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0127010	Río Gallo desde Corduente hasta Río Tajo	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0128110	Río Gallo desde confluencia de Barranco Bronchalejos hasta Corduente	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0128210	Río Gallo desde su nacimiento hasta Barranco Bronchalejos	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0129010	Río Cabrillas hasta Río Tajo	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0131020	Embalse de Buendía	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0132010	Río Guadiela desde Río Escabas hasta Embalse de Buendía	MUY BUENO	BUENO	BUENO O MEJOR
ES030MSPF0133010	Río Guadiela y otros hasta Río Escabas	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0134010	Río Guadiela desde Embalse de El Molino de Chincha hasta Río de Alcantud	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0134120	Embalse de Molino de Chincha	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0135110	Río Guadiela y Masegar hasta Embalse Molino de Chincha	MUY BUENO	BUENO	BUENO O MEJOR
ES030MSPF0135210	Río Masegar hasta Laguna Grande del Tobar	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0136010	Río de la Vega hasta Embalse de Bolarque	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0137010	Río Mayor desde su nacimiento hasta Embalse de Buendía	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0138010	Río Guadamejud hasta Embalse de Buendía	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0139010	Arroyo de Garibay hasta Embalse de Buendía	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0140010	Río Garigay hasta Embalse de Buendía	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0141010	Río Viejo y Arroyo de Mierdanchel hasta Embalse de Buendía	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0142010	Río Escabas desde Río Trabaque hasta Río Guadiela	MUY BUENO	BUENO	BUENO O MEJOR
ES030MSPF0143110	Río Escabas hasta Río Trabaque	MUY BUENO	BUENO	BUENO O MEJOR

Código	Masa de agua	Estado/ Potencial ecológico	Estado químico	Estado final
ES030MSPF0143210	Cabecera del Río Escabas	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0144010	Río Trabaque desde su nacimiento hasta Río Escabas	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0145011	Río Cuervo aguas abajo de Embalse de La Tosca	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0146020	Embalse de La Tosca	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0147010	Río Cuervo hasta Embalse de La Tosca	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0148040	Laguna Grande de El Tobar	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0149040	Laguna de Taravilla	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0201110	Río Tajuña desde Arroyo Juncal hasta Río Jarama	DEFICIENTE	BUENO	PEOR QUE BUENO
ES030MSPF0201210	Río Tajuña desde Río Ungría hasta Barranco del Agua	DEFICIENTE	BUENO	PEOR QUE BUENO
ES030MSPF0202011	Río Tajuña desde Embalse de la Tajera hasta Río Ungría	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0203020	Embalse de La Tajera	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0204010	Río Tajuña hasta Embalse de la Tajera	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0205010	Río Ungría hasta Río Tajuña	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0206010	Arroyo de San Andrés hasta Río Tajuña	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0207010	Barranco del Reato hasta Embalse de La Tajera	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0301010	Río Henares desde Arroyo de Torote hasta Río Jarama	DEFICIENTE	BUENO	PEOR QUE BUENO
ES030MSPF0302010	Río Henares desde Arroyo del Sotillo hasta Arroyo de Torote	MODERADO	No alcanza el buen estado	PEOR QUE BUENO
ES030MSPF0303010	Río Henares desde Río Badiel hasta Barranco del Alamín	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0304010	Río Henares desde Canal del Henares hasta Río Badiel	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0305010	Río Henares desde río Sorbe a Arroyo Valmatón	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0306010	Río Henares desde Río Bornova hasta Río Sorbe	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0307010	Río Henares desde Río Cañamares hasta Río Bornova	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0308010	Río Henares desde Río Dulce hasta Río Cañamares	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0309021	Río Henares desde Río Salado hasta Río Dulce	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0310010	Río Henares hasta confluencia con Río Salado	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0311010	Arroyo de Torote hasta Río Henares	DEFICIENTE	BUENO	PEOR QUE BUENO

Código	Masa de agua	Estado/ Potencial ecológico	Estado químico	Estado final
ES030MSPF0312010	Arroyo de Camarmilla hasta Río Henares	DEFICIENTE	BUENO	PEOR QUE BUENO
ES030MSPF0313010	Arroyo de las Dueñas hasta Río Henares	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0314010	Arroyo de Majanar hasta Río Henares	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0315010	Río Badiel hasta Río Henares	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0316011	Río Sorbe desde Embalse de Beleña hasta Río Henares	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0317020	Embalse de Beleña	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0318110	Río Sorbe desde Embalse Pozo de los Ramos hasta Embalse de Beleña	MUY BUENO	BUENO	BUENO O MEJOR
ES030MSPF0318220	Embalse Pozo de Los Ramos	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0318310	Río Sorbe hasta Embalse Pozo de los Ramos	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0319010	Arroyo de la Dehesa hasta Río Sorbe	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0320011	Río Bornova desde Embalse de Alcorlo hasta Río Henares	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0321020	Embalse de Alcorlo	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0322110	Río Riotillo hasta Embalse de Alcorlo	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0322310	Río Bornova hasta Embalse de Alcorlo	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0322410	Río Pelagallinas	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0323011	Río Cañamares desde Embalse de Pálmaces hasta Río Henares	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0324020	Embalse de Pálmaces	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0325010	Río Cañamares hasta Embalse de Pálmaces	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0326110	Río Dulce hasta Río Henares	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0326210	Cabecera del Río Dulce	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0327021	Río Salado desde Embalse de El Atance hasta Río Henares	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0328020	Embalse de El Atance	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0329110	Río Salado hasta Embalse de El Atance	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0329210	Río Cercadillo hasta su confluencia con Río Salado	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0330010	Arroyo Sauco hasta Río Salado	BUENO	BUENO	BUENO O MEJOR

Código	Masa de agua	Estado/ Potencial ecológico	Estado químico	Estado final
ES030MSPF0330040	Laguna Grande y Laguna Chica	DEFICIENTE	BUENO	PEOR QUE BUENO
ES030MSPF0331040	Laguna de Somolinos	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0401010	Río Guadarrama desde Bargas hasta Río Tajo	DEFICIENTE	BUENO	PEOR QUE BUENO
ES030MSPF0401110	Arroyo de Vallehermoso	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0402010	Río Guadarrama desde Río Aulencia hasta Bargas	DEFICIENTE	No alcanza el buen estado	PEOR QUE BUENO
ES030MSPF0403110	Río Guadarrama desde Galapagar hasta Río Aulencia	DEFICIENTE	BUENO	PEOR QUE BUENO
ES030MSPF0403220	Embalse de Molino de la Hoz	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0403310	Río Guadarrama desde Embalse de Las Nieves hasta Embalse Molino de la Hoz	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0403420	Embalse de Las Nieves	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0404021	Río Guadarrama y Arroyo de los Linos	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0405010	Río Guadarrama desde Río Navalmedio hasta Arroyo Loco	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0405120	Embalse Arroyo de La Venta o Las Berceas	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0405220	Embalse de Navalmedio	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0406010	Arroyo de Renales hasta Río Guadarrama	DEFICIENTE	BUENO	PEOR QUE BUENO
ES030MSPF0407021	Arroyo de los Combos	DEFICIENTE	BUENO	PEOR QUE BUENO
ES030MSPF0408021	Arroyo del Soto hasta Río Guadarrama	DEFICIENTE	No alcanza el buen estado	PEOR QUE BUENO
ES030MSPF0409021	Río Aulencia desde Embalse de Aulencia hasta Río Guadarrama	DEFICIENTE	BUENO	PEOR QUE BUENO
ES030MSPF0410020	Embalse de Aulencia	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0411020	Embalse de Valmayor	DEFICIENTE	BUENO	PEOR QUE BUENO
ES030MSPF0412010	Arroyo del Batán hasta Embalse de Valmayor	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0413021	Arroyo del Plantío	DEFICIENTE	BUENO	PEOR QUE BUENO
ES030MSPF0414011	Arroyo de la Jarosa desde Embalse de la Jarosa	DEFICIENTE	BUENO	PEOR QUE BUENO
ES030MSPF0415020	Embalse de La Jarosa	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0416021	Río Jarama desde Río Tajuña hasta Río Tajo	DEFICIENTE	BUENO	PEOR QUE BUENO
ES030MSPF0417021	Río Jarama desde Embalse del Rey hasta Río Tajuña	DEFICIENTE	BUENO	PEOR QUE BUENO
ES030MSPF0418020	Embalse del Rey	BUENO O SUPERIOR	No alcanza el buen estado	PEOR QUE BUENO

Código	Masa de agua	Estado/ Potencial ecológico	Estado químico	Estado final
ES030MSPF0419010	Río Jarama desde Río Henares hasta Embalse del Rey	DEFICIENTE	BUENO	PEOR QUE BUENO
ES030MSPF0420021	Río Jarama desde Arroyo de Valdebebas hasta Río Henares	DEFICIENTE	BUENO	PEOR QUE BUENO
ES030MSPF0421021	Río Jarama desde Río Guadalix hasta Arroyo de Valdebebas	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0422021	Río Jarama desde Río Lozoya hasta Río Guadalix	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0423021	Río Jarama desde Arroyo del Madroñal hasta Río Lozoya	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0424021	Río Jarama desde Embalse de El Vado hasta Arroyo del Madroñal	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0425020	Embalse de El Vado	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0426110	Río Jarama hasta Embalse del Vado	MUY BUENO	BUENO	BUENO O MEJOR
ES030MSPF0426210	Arroyo del Soto hasta Embalse de El Vado	MUY BUENO	BUENO	BUENO O MEJOR
ES030MSPF0427021	Río Manzanares a su paso por Madrid	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0428021	Río Manzanares desde Embalse de El Pardo hasta Arroyo de Trofa	DEFICIENTE	BUENO	PEOR QUE BUENO
ES030MSPF0429020	Embalse de El Pardo	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0430021	Río Manzanares desde Embalse de Manzanares el Real hasta Embalse de El Pardo	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0431020	Embalse de Manzanares el Real - Santillana	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0432010	Río Manzanares hasta Embalse de Manzanares el Real	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0432110	Arroyo del Mediano	MUY BUENO	BUENO	BUENO O MEJOR
ES030MSPF0433021	Arroyo de los Prados	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0434021	Arroyo del Culebro	DEFICIENTE	No alcanza el buen estado	PEOR QUE BUENO
ES030MSPF0435021	Arroyo de la Zarzuela	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0436010	Arroyo de Trofa	DEFICIENTE	BUENO	PEOR QUE BUENO
ES030MSPF0437021	Río Navacerrada - Samburiel desde Embalse de Navacerrada hasta Embalse de Manzanares el Real	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0438020	Embalse de Navacerrada	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0439010	Arroyo de Pantueña hasta Río Jarama	MALO	BUENO	PEOR QUE BUENO
ES030MSPF0440021	Arroyo de Viñuelas	MODERADO	BUENO	PEOR QUE BUENO

Código	Masa de agua	Estado/ Potencial ecológico	Estado químico	Estado final
ES030MSPF0441021	Río Guadalix desde Embalse de Pedrezuela hasta Río Jarama	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0442020	Embalse de Pedrezuela	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0442110	Río Guadalix hasta el Embalse de Pedrezuela	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0442220	Embalse Miraflores de La Sierra	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0443021	Río Lozoya desde Embalse de El Atazar hasta Río Jarama	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0444020	Embalse de El Atazar	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0445020	Embalse de El Villar	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0446020	Embalse de Puentes Viejas	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0447020	Embalse de Riosequillo	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0448021	Río Lozoya desde Embalse de Pinilla hasta Embalse de Riosequillo	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0449020	Embalse de Pinilla	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0450110	Río Lozoya hasta Embalse de Pinilla	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0450210	Río Lozoya hasta su confluencia con el Arroyo del Artiñuelo	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0451010	Ríos Riato y de la Puebla hasta Embalse de El Atazar	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0452010	Río Madarquillos hasta Embalse de Puentes Viejas	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0453010	Arroyo de Canencia hasta Río Lozoya	MUY BUENO	BUENO	BUENO O MEJOR
ES030MSPF0454010	Arroyo de Vallosera hasta Embalse del Vado	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0455040	Laguna Grande de Peñalara	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0456040	Laguna de Los Pájaros	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0457040	Complejo lagunar de humedales temporales del Macizo de Peñalara	MUY BUENO	BUENO	BUENO O MEJOR
ES030MSPF0501021	Río Alberche desde Embalse de Cazalegas hasta Río Tajo	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0502020	Embalse de Cazalegas	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0503021	Río Alberche desde Arroyo Grande hasta Embalse de Cazalegas	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0504021	Río Alberche desde Arroyo de la Parra hasta Arroyo Grande	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0505021	Río Alberche desde Río Perales hasta Arroyo de la Parra	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0506021	Río Alberche desde Embalse de Picadas hasta Río Perales	MODERADO	BUENO	PEOR QUE BUENO

Código	Masa de agua	Estado/ Potencial ecológico	Estado químico	Estado final
ES030MSPF0507020	Embalse de Picadas	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0508020	Embalse de San Juan	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0508110	Arroyo de Tórtolas	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0508220	Embalse Los Morales	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0508310	Arroyo Garganta de la Yedra	MUY BUENO	BUENO	BUENO O MEJOR
ES030MSPF0509021	Río Alberche desde Embalse de El Charco del Cura hasta Embalse de San Juan	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0510020	Embalse de El Charco del Cura	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0511020	Embalse de El Burguillo	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0512010	Río Alberche desde Garganta del Royal hasta Embalse de El Burguillo	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0513010	Río Alberche desde Río Piquillo hasta Garganta del Royal	MUY BUENO	BUENO	BUENO O MEJOR
ES030MSPF0514010	Río Alberche hasta el Río Piquillo	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0515010	Arroyo de Marigarcía hasta Río Alberche	DEFICIENTE	No alcanza el buen estado	PEOR QUE BUENO
ES030MSPF0516010	Arroyo Grande hasta Río Alberche	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0517010	Arroyo de la Parra hasta Río Alberche	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0518010	Río Perales hasta Río Alberche	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0519010	Cabecera del Río Perales y afluentes	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0520010	Río Cofio desde Río Sotillo hasta Embalse de San Juan	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0521010	Río Cofio desde Río de las Herreras hasta Río Sotillo	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0521120	Embalse Valtravieso	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0522011	Río de la Aceña desde Embalse de La Aceña hasta Río Cofio	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0522120	Embalse de El Tobar	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0523020	Embalse de La Aceña	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0523110	Arroyo de Chubieco	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0523220	Embalse de Cañada Mojada	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0524010	Río Sotillo hasta Río Cofio	BUENO	BUENO	BUENO O MEJOR

Código	Masa de agua	Estado/ Potencial ecológico	Estado químico	Estado final
ES030MSPF0525110	Río Becedas desde Embalse Hoyo de Becedas II hasta Río Sotillo	DEFICIENTE	BUENO	PEOR QUE BUENO
ES030MSPF0525220	Embalse de Hoyo de Becedas II	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0525310	Río Becedas desde Embalse de Navalperal hasta Embalse Hoyo de Becedas II	DEFICIENTE	BUENO	PEOR QUE BUENO
ES030MSPF0525420	Embalse de Navalperal De Pinares	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0526010	Río de la Gaznata hasta el Embalse de El Burguillo	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0526120	Embalse de La Reguera	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0526220	Embalse Herradón De Pinares - Valdihuelo	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0527010	Garganta de Iruelas y otros hasta Embalse de El Burguillo	MUY BUENO	BUENO	BUENO O MEJOR
ES030MSPF0528010	Arroyo de Arrejondo hasta Embalse de El Burguillo	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0529010	Arroyo Chiquillo hasta Río Alberche	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0529110	Arroyo de Santa María	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0529220	Embalse Navalmoral de La Sierra - Horcajo	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0601020	Embalse de Azután	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0602021	Río Tajo desde Río Alberche hasta la cola del Embalse de Azután	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0603021	Río Tajo en la confluencia con el Río Alberche	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0604021	Río Tajo aguas abajo del Embalse de Castrejón	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0605020	Embalse de Castrejón	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0606021	Río Tajo desde Río Guadarrama hasta Embalse de Castrejón	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0607021	Río Tajo en Toledo hasta Río Guadarrama	DEFICIENTE	BUENO	PEOR QUE BUENO
ES030MSPF0608110	Arroyo de Guazalete	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0608221	Río Tajo desde confluencia con Arroyo de Guatén hasta Toledo	DEFICIENTE	BUENO	PEOR QUE BUENO
ES030MSPF0608321	Río Tajo desde Río Jarama hasta confluencia con Arroyo de Guatén	DEFICIENTE	BUENO	PEOR QUE BUENO
ES030MSPF0609110	Río Uso desde Embalse Arroyo de San Vicente hasta Embalse de Azután	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0609220	Embalse Arroyo de San Vicente	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0609310	Río Uso desde Arroyo de San Vicente hasta Embalse de Arroyo de San Vicente	MUY BUENO	BUENO	BUENO O MEJOR

Código	Masa de agua	Estado/ Potencial ecológico	Estado químico	Estado final
ES030MSPF0609420	Embalse de Riofrío	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0610111	Río Gévalo desde Embalse de La Grajera hasta Embalse de Azután	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0610220	Embalse de La Grajera	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0610311	Río Gévalo desde Embalse del Río Gévalo hasta Embalse de La Grajera	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0611020	Embalse de El Gévalo	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0612010	Río Gévalo hasta Embalse de El Gévalo	MUY BUENO	BUENO	BUENO O MEJOR
ES030MSPF0613010	Arroyo Sangrera y río Fresnedoso hasta Río Tajo	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0614010	Río Pusa desde Embalse de Pusa	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0614120	Embalse de Pusa	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0615110	Río Pusa hasta Embalse de Pusa	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0615210	Arroyo Cabrera hasta Río Pusa	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0616010	Río Cedena hasta Río Tajo	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0617011	Arroyo del Torcón desde Embalse de El Torcón hasta Río Tajo	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0618020	Embalse de El Torcón	MALO	BUENO	PEOR QUE BUENO
ES030MSPF0618110	Arroyo del Torcón	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0618220	Embalse Cabeza de Torcón	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0619010	Arroyo de las Cuevas hasta Río Tajo	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0620021	Arroyo de Guajaraz desde Embalse del Guajaraz hasta Río Tajo	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0621020	Embalse de El Guajaraz	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0622021	Río Algodor desde Embalse de El Castro hasta Río Tajo	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0623020	Embalse de El Castro	DEFICIENTE	BUENO	PEOR QUE BUENO
ES030MSPF0624021	Río Algodor desde Embalse de Finisterre hasta Embalse de El Castro	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0625020	Embalse de Finisterre	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0626010	Río Algodor desde Arroyo Bracea hasta Embalse de Finisterre	MALO	BUENO	PEOR QUE BUENO
ES030MSPF0627110	Arroyo de Martín Román desde los Saladares de Villasequilla hasta Río Tajo	MODERADO	BUENO	PEOR QUE BUENO

Código	Masa de agua	Estado/ Potencial ecológico	Estado químico	Estado final
ES030MSPF0627210	Arroyo de Martín Román hasta Arroyo de la Madre	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0628021	Arroyo de Guatén y Arroyo de Gansarinos	DEFICIENTE	No alcanza el buen estado	PEOR QUE BUENO
ES030MSPF0629031	Canal de Castrejón	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0630030	Embalse de La Portiña	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0632010	Arroyo Barcience hasta Embalse de Castrejón	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0701020	Embalse de Torrejón-Tiétar	DEFICIENTE	BUENO	PEOR QUE BUENO
ES030MSPF0702021	Río Tiétar desde Arroyo Santa María hasta Embalse de Torrejón-Tiétar	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0703021	Río Tiétar desde Embalse de Rosarito hasta Arroyo Santa María	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0704020	Embalse de Rosarito	MALO	BUENO	PEOR QUE BUENO
ES030MSPF0705010	Río Tiétar desde Río Guadyerbas hasta Embalse de Rosarito	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0706010	Río Tiétar desde Arroyo Tamujoso hasta Río Guadyerbas	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0707010	Río Tiétar desde Reguero de las Pozas hasta Arroyo Tamujoso	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0708110	Río Tiétar desde Río Escorial hasta Arroyo del Cuadro	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0708210	Río Tiétar hasta confluencia del Río Escorial	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0708320	Embalse Fuente de El Castaño	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0708420	Embalse Piedralaves - De Nuño Cojo	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0708520	Embalse Sotillo de La Adrada - Majalobos	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0708610	Garganta de Majalobos hasta Embalse Sotillo De La Adrada - Majalobos	MUY BUENO	BUENO	BUENO O MEJOR
ES030MSPF0709010	Arroyo de Calzones y otros hasta Embalse de Torrejón-Tiétar	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0709120	Embalse de Valdelinares - Malpartida de Plasencia III	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0709210	Arroyo de Calzones	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0709320	Embalse Las Covachillas - Malpartida de Plasencia II	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0709410	Arroyo de los Pilones	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0709520	Embalse de Malpartida de Plasencia I	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0710010	Arroyo Porquerizo desde Arroyo del Puente Mocho hasta Río Tiétar	MODERADO	BUENO	PEOR QUE BUENO

Código	Masa de agua	Estado/ Potencial ecológico	Estado químico	Estado final
ES030MSPF0711110	Arroyo de la Gargüera hasta Río Tiétar	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0711220	Embalse de Gargüera	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0711310	Arroyo de la Gargüera y Garganta Tejeda hasta Embalse de Gargüera	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0711420	Embalse de Las Moreras	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0711510	Garganta Tejeda hasta Embalse de Las Moreras	MUY BUENO	BUENO	BUENO O MEJOR
ES030MSPF0711620	Embalse Las Camellas - Garganta de El Obispo	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0712110	Garganta de Jaranda hasta Río Tiétar	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0712210	Garganta de Jaranda hasta confluencia con Garganta Pedro Chate	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0713010	Gargantas Mayor, Pedro Chate, San Gregorio y Cascarones	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0713120	Embalse Las Majadillas	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0714010	Arroyo de Casas y Arroyo de Domblasco y del Tizonoso Grande	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0715010	Arroyo del Molinillo hasta Río Tiétar	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0715120	Embalse de Navalmoral de la Mata	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0716010	Arroyo de Santa María desde Arroyo de Fresnedoso hasta Río Tiétar	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0717010	Arroyo de Santa María y afluentes hasta Arroyo de Fresnedoso	DEFICIENTE	BUENO	PEOR QUE BUENO
ES030MSPF0718110	Arroyo de Fresnedoso hasta Arroyo de Santa María	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0718210	Cabecera del Arroyo de Fresnedoso	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0719010	Garganta de Cuartos hasta Río Tiétar	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0720010	Río Moros hasta Río Tiétar	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0721010	Arroyo Carcaboso hasta Río Tiétar	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0722010	Garganta de Gualtaminos desde Embalse de Gualtaminos hasta Río Tiétar	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0722120	Embalse de Gualtaminos - Villanueva de la Vera	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0723110	Arroyo de Alcañizo y otros hasta Río Tiétar	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0723210	Arroyo Viejo de Alcañizo desde nacimiento hasta Arroyo Alcañizo	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0723320	Embalse Velada - Los Huertos	BUENO O SUPERIOR	BUENO	BUENO O MEJOR

Código	Masa de agua	Estado/ Potencial ecológico	Estado químico	Estado final
ES030MSPF0724010	Garganta de Minchones hasta Río Tiétar	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0725010	Gargantas de Chilla y Alardos hasta Río Tiétar	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0726010	Garganta de Santa María hasta Embalse de Rosarito	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0727010	Río Arbillas hasta Embalse de Rosarito	MUY BUENO	BUENO	BUENO O MEJOR
ES030MSPF0728011	Río Guadyerbas desde Embalse de Navalcán hasta Río Tiétar	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0729020	Embalse de Navalcán	MALO	BUENO	PEOR QUE BUENO
ES030MSPF0730110	Río Guadyerbas desde el Arroyo Riolobos hasta Embalse de Navalcán	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0730210	Río Guadyerbas desde Embalse Manantial de Los Pradillos hasta confluencia del Arroyo Riolobos	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0730320	Embalse Sotillo de Las Palomas - Manantial de Los Pradillos	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0730410	Río Guadyerbas hasta Embalse Manantial de Los Pradillos	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0730520	Embalse de Guadyerbas	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0730620	Embalse Marrupe - Marrupejo	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0731110	Río Arenal desde Río de Cantos hasta Río Tiétar	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0731220	Embalse de Riocuevas	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0731310	Río Cuevas hasta Embalse de Riocuevas	MUY BUENO	BUENO	BUENO O MEJOR
ES030MSPF0732010	Río Ramacastañas	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0733010	Garganta de Lanzahíta	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0734010	Garganta de las Torres hasta Río Tiétar	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0735010	Garganta de Torinas desde Arroyo de Valdeáguila hasta Río Tiétar	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0736010	Arroyo del Lugar hasta Garganta de Torinas	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0737020	Embalse de El Pajarero	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0737110	Garganta del Pajarejo	MUY BUENO	BUENO	BUENO O MEJOR
ES030MSPF0742030	Lago Colinar	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0801021	Río Arrago desde Arroyo de Patana hasta Embalse de Alcántara	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0802021	Río Arrago desde Embalse de Borbollón hasta Arroyo de Patana	DEFICIENTE	BUENO	PEOR QUE BUENO

Código	Masa de agua	Estado/ Potencial ecológico	Estado químico	Estado final
ES030MSPF0803020	Embalse de Borbollón	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0804010	Río Arrago hasta Embalse de Borbollón	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0805021	Rivera de Gata desde Embalse Rivera de Gata hasta Río Arrago	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0806020	Embalse Rivera de Gata	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0807010	Rivera de Gata hasta Embalse Rivera de Gata	MUY BUENO	BUENO	BUENO O MEJOR
ES030MSPF0808010	Rivera de Acebo hasta Rivera de Gata	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0809010	Arroyo de Patana y otros hasta Río Arrago	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0810010	Río Tralgas hasta Río Arrago	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0811020	Embalse Villanueva de La Sierra - Pedroso	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0812020	Embalse La Cervigona - Prado de Las Monjas	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0901010	Río Alagón desde Río Jerte hasta Embalse de Alcántara	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0902021	Río Alagón desde Embalse de Valdeobispo hasta Río Jerte MODERADO BUENO			PEOR QUE BUENO
ES030MSPF0902110	Arroyo de Aceituna BUENO O SUPERIOR BUI		BUENO	BUENO O MEJOR
ES030MSPF0902220	Embalse San Marcos - Z.S. Montehermoso	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0903020	Embalse de Valdeobispo	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0903110	Arroyo del Palomero	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0904020	Embalse de Guijo de Granadilla	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0905020	Embalse de Gabriel y Galán	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0905110	Arroyo de Campallal desde Embalse de las Tapias hasta Embalse de Gabriel y Galán	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0905220	Embalse de Las Tapias	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0905310	Arroyo Chapallal hasta Embalse de Las Tapias	MUY BUENO	BUENO	BUENO O MEJOR
ES030MSPF0906110	Río Alagón hasta Embalse de Gabriel y Galán	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0906210	Cabecera del Río Alagón	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0906310	Arroyo Sangusín	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0906320	Embalse Arroyo Perdiguera	BUENO O SUPERIOR	BUENO	BUENO O MEJOR

Código	Masa de agua	Estado/ Potencial ecológico	Estado químico	Estado final
ES030MSPF0907010	Arroyo Grande hasta Río Alagón	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0907120	Embalse de Montehermoso - Del Pez	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0908010	Arroyo del Encín hasta Río Alagón	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0909010	Rivera de Holguera hasta Río Alagón	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0910010	Arroyo del Boquerón del Rivero desde Embalse de El Boquerón	DEFICIENTE	BUENO	PEOR QUE BUENO
ES030MSPF0910120	Embalse de El Boquerón	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0911010	Arroyo del Boquerón del Rivero hasta el Embalse de El Boquerón	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0912010	Arroyo de las Monjas hasta Río Alagón	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0913010	Río Jerte desde Garganta de la Oliva hasta Río Alagón	DEFICIENTE	BUENO	PEOR QUE BUENO
ES030MSPF0914021	Río Jerte desde Embalse de Jerte- Plasencia hasta Garganta de la Oliva	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0915020	Embalse de Jerte-Plasencia	PEOR QUE BUENO		
ES030MSPF0916010	Río Jerte desde Garganta de los Infiernos hasta Embalse de Jerte- Plasencia			BUENO O MEJOR
ES030MSPF0916120	Embalse de Piornal	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0917110	Cabecera del Jerte	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0917210	Garganta de los Infiernos	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0918010	Garganta de la Oliva y otros hasta Río Jerte	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0918120	Embalse Villar de Plasencia - La Oliva	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0918220	Embalse de Garganta De La Oliva	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0919010	Rivera del Bronco y Arroyo de los Jarales hasta Río Alagón	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0919220	Embalse Charco Azaol - Palomero	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0920110	Río Ambroz hasta Embalse de Valdeobispo	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0920210	Cabecera del Río Ambroz	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0920320	Embalse de Hervás - El Horcajo	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0921010	Río de los Ángeles y Río Esperabán desde Embalse de Los Ángeles hasta Embalse de Gabriel y Galán	BUENO BUENO		BUENO O MEJOR
ES030MSPF0921120	Embalse de Los Ángeles	BUENO O SUPERIOR	BUENO	BUENO O MEJOR

Código	Masa de agua	Estado/ Potencial ecológico	Estado químico	Estado final
ES030MSPF0922010	Río Hurdano y Río Malvellido hasta Embalse de Gabriel y Galán	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0922120	Embalse de Arrocerezal	BUENO O MEJOR		
ES030MSPF0922220	Embalse de Majá Robledo	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0923110	Río Ladrillar hasta Embalse de Gabriel y Galán	MUY BUENO	BUENO	BUENO O MEJOR
ES030MSPF0923210	Río Batuecas	MUY BUENO	BUENO	BUENO O MEJOR
ES030MSPF0923310	Arroyo del Cabril	MUY BUENO	BUENO	BUENO O MEJOR
ES030MSPF0924010	Río Cuerpo de Hombre hasta Río Alagón	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0925010	Río Cuerpo de Hombre a su paso por Béjar	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0926010	Río Cuerpo de Hombre aguas arriba de Béjar	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0927110	Río Francia hasta Río Alagón	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0927210	Río Francia hasta confluencia con Arroyo de San Benito	BUENO	BUENO	BUENO O MEJOR
ES030MSPF0928030	Embalse de Ahigal	DEFICIENTE	BUENO	PEOR QUE BUENO
ES030MSPF0929030	Embalse de Baños	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0929110	Arroyo Baños hasta Embalse de Baños	MUY BUENO	BUENO	BUENO O MEJOR
ES030MSPF0930030	Embalse de Navamuño	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0931010	Barranco de la Dehesa	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0931120	Embalse de Las Aguas De Ceclavín	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0932010	Arroyo del Torruco	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0932120	Embalse Pescueza	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF0934010	Arroyo Cambrón	MUY BUENO	BUENO	BUENO O MEJOR
ES030MSPF0935010	Arroyo de los Molinos	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF0935120	Embalse de La Raposera - Zarza la Mayor	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF1001020	Embalse de Cedillo	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF1002020	Embalse de Alcántara	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF1003020	Embalse de Torrejón-Tajo	DEFICIENTE	BUENO	PEOR QUE BUENO
ES030MSPF1004020	Embalse de Valdecañas	DEFICIENTE	BUENO	PEOR QUE BUENO

Código	Masa de agua	Estado/ Potencial ecológico	Estado químico	Estado final
ES030MSPF1005021	Río Tajo desde Embalse de Azután hasta Embalse de Valdecañas	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF1006010	Río Erjas desde Ribeira do Enchacana hasta Embalse de Cedillo -PT-	BUENO	BUENO	BUENO O MEJOR
ES030MSPF1007010	Río Erjas desde Arroyo del Corral de los Garbanzos hasta Ribeira do Enchacana - PT-	BUENO	BUENO	BUENO O MEJOR
ES030MSPF1008010	Rivera Basádiga y Río Erjas desde Río Torto hasta Arroyo del Corral de los Garbanzos -PT-	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF1009010	Río Torto hasta Rivera Basádiga -PT-	BUENO	BUENO	BUENO O MEJOR
ES030MSPF1010010	Rivera Trevejana hasta Río Erjas	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF1010120	Embalse Atalaya	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF1011010	Río Erjas y afluentes hasta Rivera Basádiga	BUENO	BUENO	BUENO O MEJOR
ES030MSPF1012021	Rivera Fresnedosa desde Embalse de Portaje hasta Embalse de Alcántara	BUENO	PEOR QUE BUENO	
ES030MSPF1013020	Embalse de Portaje	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF1014021	Río Guadiloba desde Arroyo de la Ribera hasta Embalse de Alcántara DEFICIENTE BUENO		PEOR QUE BUENO	
ES030MSPF1015021	Río Guadiloba desde Embalse de Guadiloba hasta Arroyo de la Ribera	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF1016010	Arroyo de la Vid hasta Embalse de Alcántara	BUENO	BUENO	BUENO O MEJOR
ES030MSPF1016120	Embalse de Cantaelgallo - La Vid	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF1017110	Arroyo de Barbaoncillo hasta Embalse de Alcántara	BUENO	BUENO	BUENO O MEJOR
ES030MSPF1017210	Arroyo de Barbaón hasta Embalse de Alcántara	MUY BUENO	BUENO	BUENO O MEJOR
ES030MSPF1017310	Arroyo de Malvecino hasta Embalse de Alcántara	MUY BUENO	BUENO	BUENO O MEJOR
ES030MSPF1018020	Embalse de Almaraz-Arrocampo	MALO	BUENO	PEOR QUE BUENO
ES030MSPF1019010	Garganta de Descuernacabras hasta Embalse de Torrejón-Tajo	MUY BUENO	BUENO	BUENO O MEJOR
ES030MSPF1019120	Embalse Deleitosa - De Los Batanes	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF1020110	Río Ibor desde Río Pinarejo	BUENO	BUENO	BUENO O MEJOR
ES030MSPF1020120	Embalse Fresnedoso de Ibor - Moral	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF1020210	Río Viejas	MUY BUENO	BUENO	BUENO O MEJOR
ES030MSPF1021110	Río Gualija hasta Embalse de Valdecañas	BUENO	BUENO BUENO	
ES030MSPF1021210	Río Mesto y cabecera del Río Gualija	BUENO	BUENO	MEJOR BUENO O MEJOR

Código	Masa de agua	Estado/ Potencial ecológico	Estado químico	Estado final
ES030MSPF1022110	Río Salor, Rio Jumadiel y Río Zamóres hasta Embalse de Cedillo	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF1022210	Rivera de la Torre	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF1022220	Embalse Membrío - Pantano del Cementerio	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF1022310	Río Salor desde su nacimiento hasta Rivera de la Torre	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF1022420	Embalse de Rivera De Mula	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF1022520	Embalse de La Jabalina	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF1022620	Embalse de Aliseda	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF1023011	Río Salor desde Embalse de El Salor hasta Río Ayuela	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF1024020	Embalse de El Salor	MALO	BUENO	PEOR QUE BUENO
ES030MSPF1025010	Río Ayuela y Arroyo de Santiago desde Embalse de Ayuela hasta Río Salor	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF1026020	Embalse de Ayuela	BUENO	PEOR QUE BUENO	
ES030MSPF1027020	Embalse Aldea del Cano - Nogales	MALO	BUENO	PEOR QUE BUENO
ES030MSPF1028010	Río Sever desde Ribeiro do Pinheiro hasta Embalse de Cedillo -PT-		BUENO O MEJOR	
ES030MSPF1029010	Río Sever desde Regato de la Miera hasta Ribeiro do Pinheiro -PT-	MUY BUENO	BUENO	BUENO O MEJOR
ES030MSPF1030010	Río Alburrel desde Rivera Avid hasta Río Sever	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF1031010	Río Alburrel desde cabecera hasta Rivera Avid	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF1032010	Rivera Aurela hasta Embalse de Cedillo	BUENO	BUENO	BUENO O MEJOR
ES030MSPF1032120	Embalse Santiago de Alcántara - Malmoreno	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF1033010	Rivera de Carbajo hasta Embalse de Cedillo	BUENO	BUENO	BUENO O MEJOR
ES030MSPF1034010	Rivera de Calatrucha hasta Embalse de Cedillo	BUENO	BUENO	BUENO O MEJOR
ES030MSPF1035010	Río Almonte desde Arroyo del Búho hasta Embalse de Alcántara	BUENO	BUENO	BUENO O MEJOR
ES030MSPF1035120	Embalse de Santa Ana	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF1036010	Cabecera del Río Almonte	BUENO BUENO		BUENO O MEJOR
ES030MSPF1036120	Embalse de Santa Lucía	BUENO O SUPERIOR	BUENO	BUENO O MEJOR

Código	Masa de agua	Estado/ Potencial ecológico	Estado químico	Estado final	
ES030MSPF1037110	Río Tozo hasta Río Almonte	MODERADO	BUENO	PEOR QUE BUENO	
ES030MSPF1037210	Río Marinejo hasta Río Tozo	Río Marinejo hasta Río Tozo MODERADO BUENO			
ES030MSPF1038110	Río Tamuja y Arroyo del Mato hasta Embalse de Alcántara II	BUENO	BUENO	BUENO O MEJOR	
ES030MSPF1038210	Río Gibranzos hasta Río Tamuja	MUY BUENO	BUENO	BUENO O MEJOR	
ES030MSPF1038220	Embalse de Navarredonda	BUENO O SUPERIOR	BUENO	BUENO O MEJOR	
ES030MSPF1038320	Embalse de El Prado	BUENO O SUPERIOR	BUENO	BUENO O MEJOR	
ES030MSPF1039010	Río Magasca	MODERADO	BUENO	PEOR QUE BUENO	
ES030MSPF1039120	Embalse Santa Marta De Magasca - Valdehonduras	BUENO O SUPERIOR	BUENO	BUENO O MEJOR	
ES030MSPF1039220	Embalse de La Cumbre	BUENO O SUPERIOR	BUENO	BUENO O MEJOR	
ES030MSPF1040020	Embalse de Guadiloba	MODERADO	BUENO	PEOR QUE BUENO	
ES030MSPF1041030	Embalse de Casar de Cáceres	DEFICIENTE	BUENO	PEOR QUE BUENO	
ES030MSPF1042030	Embalse Molano	MALO	BUENO	PEOR QUE BUENO	
ES030MSPF1043030	Embalse Petit I	Embalse Petit I DEFICIENTE		PEOR QUE BUENO	
ES030MSPF1044030	Embalse de Alcuéscar	DEFICIENTE	BUENO	PEOR QUE BUENO	
ES030MSPF1045010	Río Pantones	MODERADO	BUENO	PEOR QUE BUENO	
ES030MSPF1046010	Río Ayuela	DEFICIENTE	BUENO	PEOR QUE BUENO	
ES030MSPF1047010	Río Salor	DEFICIENTE	BUENO	PEOR QUE BUENO	
ES030MSPF1047120	Embalse de El Gallo	BUENO O SUPERIOR	BUENO	BUENO O MEJOR	
ES030MSPF1047220	Embalse de Tres Torres - Jarripa	MODERADO	BUENO	PEOR QUE BUENO	
ES030MSPF1048010	Regato del Pueblo	MODERADO	BUENO	PEOR QUE BUENO	
ES030MSPF1048120	Embalse del Pueblo	BUENO O SUPERIOR	BUENO	BUENO O MEJOR	
ES030MSPF1049010	Regato Cabrioso	BUENO O SUPERIOR	BUENO	BUENO O MEJOR	
ES030MSPF1049120	Embalse del Agua	BUENO O SUPERIOR	BUENO	BUENO O MEJOR	
ES030MSPF1050010	Arroyo de la Rehana	MODERADO	BUENO	PEOR QUE BUENO	
ES030MSPF1050120	Embalse de La Navicera - Navas del Madroño	BUENO O SUPERIOR	BUENO	BUENO O MEJOR	

Código	Masa de agua	Estado/ Potencial ecológico	Estado químico	Estado final
ES030MSPF1051010	Arroyo del Morisco	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF1051120	Embalse Garrovillas BUENO O SUPERIOR BUENO		BUENO O MEJOR	
ES030MSPF1052010	Arroyo de Pizarroso	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF1052120	Embalse de Cañaveral	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF1053010	Rivera del Castaño	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF1053120	Embalse del Risco - Rivera del Castaño	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF1054010	Arroyo del Pueblo	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF1054120	Embalse de Torrejón El Rubio	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF1055010	Río Garciaz y Arroyo Tejadilla	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF1055120	Embalse de La Madroñera - Los Alijones	BUENO O		BUENO O MEJOR
ES030MSPF1055520	Embalse Garciaz - Los Maruelos	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF1056010	Arroyo de la Mazmorra	BUENO O SUPERIOR	BUENO	
ES030MSPF1056120	Embalse de Los Huertos - del Rosal	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF1057010	Arroyo Pizarroso	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF1057120	Embalse de Pizarroso	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF1059010	Arroyo Canaleja	BUENO	BUENO	BUENO O MEJOR
ES030MSPF1060010	Arroyo Guadancil	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF1061010	Arroyo del Sauceral hasta Presa De Mohedas	BUENO	BUENO	BUENO O MEJOR
ES030MSPF1063010	Rivera de la Mata	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF1063120	Embalse de Brozas - Charca de Patos	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF1064010	Arroyo Corredor	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF1064120	Embalse de Mata De Alcántara	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF1065010	Río Jartín desde Embalse Alcántara I hasta Embalse de Cedillo	MODERADO	BUENO	PEOR QUE BUENO
ES030MSPF1065120	Embalse de Alcántara I	BUENO O SUPERIOR	BUENO	BUENO O MEJOR
ES030MSPF1066010	Rivera de Fresnedosa	BUENO O SUPERIOR BUENO		BUENO O MEJOR
ES030MSPF1066120	Embalse de Torrejoncillo	BUENO O SUPERIOR	BUENO	BUENO O MEJOR

Código	Masa de agua	Estado/ Potencial ecológico	Estado químico	Estado final
ECO20MCDE1067010	Arroya dal Halashal	BUENO O	BUENO	BUENO O
ES030MSPF1067010	Arroyo del Helechal	SUPERIOR	BUENO	MEJOR
ES030MSPF1067120	Embalse Serradilla - Trasierra	BUENO O	BUENO	BUENO O
E30301VI3PF1007120	Ellibaise Serraulla - Trasierra	SUPERIOR	BUENU	MEJOR
ES030MSPF1068010	Arroya da Valdaazaras	MUY BUENO	BUENO	BUENO O
E30301013PF1008010	Arroyo de Valdeazores	IVIOT BOENO	BUENU	MEJOR
ES030MSPF1069010	Arroyo del Pedroso	BUENO O	BUENO	BUENO O
E30201013441003010	Arroyo del Pedroso	SUPERIOR	BUENU	MEJOR
ES030MSPF1069120	Embalca da Carraccalaia	BUENO O	BUENO	BUENO O
E3030IVI3PF1009120	Embalse de Carrascalejo	SUPERIOR	BUENU	MEJOR
ES030MSPF1069220	Embalse Mohedas de la Jara	BUENO O	BUENO	BUENO O
E3030IVI3PF1009220	Empaise Monedas de la Jara	SUPERIOR	BUENU	MEJOR
ES030MSPF1070010	Arroyo de Talaván	BUENO O	BUENO	BUENO O
L30301VI3FF1070010	Arroyo de Talavari	SUPERIOR	BOENO	MEJOR
ES030MSPF1070120	Embalse de Talavan	BUENO O	BUENO	BUENO O
L3030W3FF1070120	Lilibaise de Talavail	SUPERIOR	BOENO	MEJOR
ES030MSPF1071010	Arroyo de Alpotrel	BUENO O	BUENO	BUENO O
L3030W3FF1071010	Alloyo de Alpotrei	SUPERIOR	BOENO	MEJOR
ES030MSPF1071120	Embalse de Alpotrel	BUENO O	BUENO	BUENO O
L3U3UIVI3PF1U/112U	Embaise de Aipotrei	SUPERIOR	BUENU	MEJOR
ES030MSPF1072010	Arroyo de Villaluengo	BUENO O	BUENO	BUENO O
L3030IVI3PF1072010	Arroyo de Villalderigo	SUPERIOR	BOENO	MEJOR
ES030MSPF0508420	Embalse de La Hinchona	BUENO O	BUENO	BUENO O
L30301VI3FF0306420	Lilibaise de la Hillichoffd	SUPERIOR	BUENU	MEJOR

Tabla 32. Clasificación de las masas de agua superficiales en la cuenca del Tajo, según su estado o potencial ecológico, su estado químico y su estado final

En los siguientes apartados, se adjuntan una serie de tablas, gráficos y mapas en los que se resumen y representan los resultados obtenidos.

4.1.1 Estado y potencial ecológico

El 61% de las masas de agua superficial tienen un estado o potencial ecológico bueno o superior.

	Estado/Potencial ecológico de las masas de agua										
		F	líos			La	gos				
Estado	Naturales		Muy mod	lificados y ciales	Natu	ırales		lificados y ciales alses)	То	tal	
Muy bueno	39	16%			1	14%			40	8%	
Bueno	110	45%	34	35%	4	57%	124	77%	272	53%	
Moderado	75	31%	43	44%	1	14%	21	13%	140	27%	
Deficiente	19	8%	21	21%	1	14%	10	6%	51	10%	
Malo	2	1%	0	0%	0	0%	7	4%	9	2%	
Sin evaluar	0	0%	0	0%	0	0%	0	0%	0	0%	
Total	245	100%	98	100%	7	100%	162	100%	512	100%	

Tabla 33. Resumen de la clasificación del estado/potencial ecológico de las masas de agua superficial naturales de la cuenca del Tajo

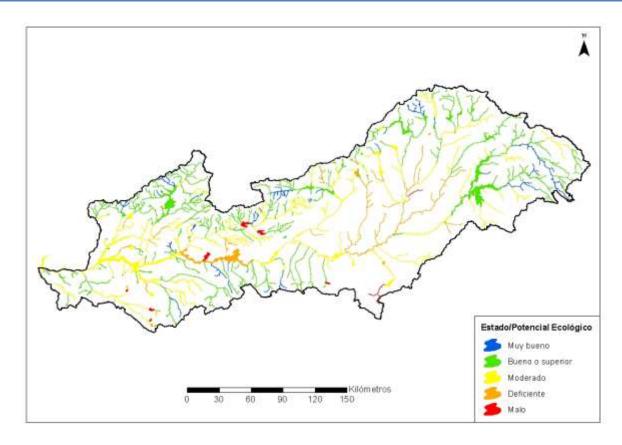
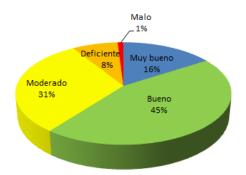


Figura 8. Estado/Potencial ecológico de las masas de agua superficial de la cuenca del Tajo

En los siguientes subapartados se presenta la información relativa al estado o potencial ecológico desglosada por categoría y naturaleza.

4.1.1.1 Estado ecológico en masas de agua naturales


Aproximadamente el 39% de las masas de agua naturales de la cuenca del Tajo obtienen un estado por debajo de bueno según los valores de los indicadores de calidad a nivel de ciclo.

Estado ecológico de las masas de agua naturales									
Estado	Ríos		Lag	gos	Total				
Muy bueno	39	16%	1	14%	40	16%			
Bueno	110	45%	4	57%	114	45%			
Moderado	75	31%	1	14%	76	30%			
Deficiente	19	8%	1	14%	20	8%			
Malo	2	1%	0	0%	2	1%			
Sin evaluar	0	0%	0	0%	0	0%			
Total	245	100%	7	100%	252	100%			

Tabla 34. Resumen de la clasificación del estado ecológico de las masas de agua superficial naturales de la cuenca del Tajo

Figura 9. Estado ecológico de las masas de agua naturales (ríos y lagos) en la cuenca del Tajo

Malo
0%

Deficiente
14%

Muy bueno
14%

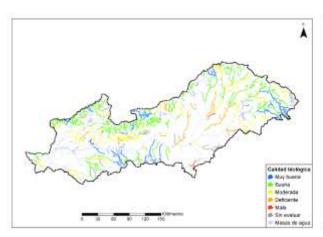

Bueno
57%

Figura 10. Estado ecológico río naturales

Figura 11. Estado ecológico lagos naturales

Masas de agua naturales de categoría río

A continuación, se representa la calidad biológica, fisicoquímica e hidromorfológica obtenida en la evaluación del estado a nivel de ciclo de las masas de agua superficial naturales de categoría río.

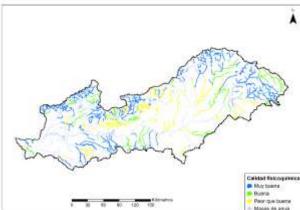


Figura 12. Calidad biológica en ríos naturales en la cuenca del Tajo

Figura 13. Calidad fisicoquímica en ríos naturales en la cuenca del Tajo

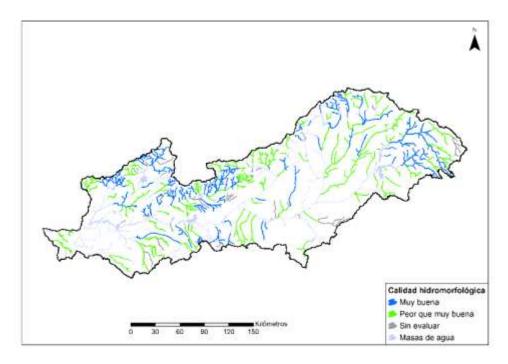


Figura 14. Calidad hidromorfológica en ríos naturales en la cuenca del Tajo

Los ecotipos con un porcentaje relativo más elevado de masas naturales de categoría río con buen estado ecológico son el R-T11 y R-T24. Por otro lado, los ecotipos con un mayor porcentaje relativo de masas con estado por debajo de bueno son los R-T01, R-T05 y R-T17.

Ecotipo	MUY BUENO		BUENO		MOD	ERADO	DEFICIENTE		MALO		Total general
R-T01	3	7,9%	7	18,4%	23	60,5%	5	13,2%		0,0%	38
R-T05		0,0%		0,0%	2	66,7%		0,0%	1	33,3%	3
R-T08	6	17,1%	18	51,4%	11	31,4%		0,0%		0,0%	35
R-T11	17	29,3%	29	50,0%	10	17,2%	2	3,4%		0,0%	58
R-T12	8	13,6%	26	44,1%	19	32,2%	5	8,5%	1	1,7%	59
R-T13		0,0%	2	33,3%	2	33,3%	2	33,3%		0,0%	6
R-T15		0,0%	4	40,0%	2	20,0%	4	40,0%		0,0%	10
R-T16	1	14,3%	4	57,1%	1	14,3%	1	14,3%		0,0%	7
R-T17		0,0%		0,0%	1	100,0%		0,0%		0,0%	1
R-T24	4	14,3%	20	71,4%	4	14,3%		0,0%		0,0%	28
	39	15,9%	110	44,9%	75	30,6%	19	7,8%	2	0,8%	245

Tabla 35. Resumen de la clasificación del estado ecológico de las masas de agua superficial lineales naturales de la cuenca del Tajo según su tipología

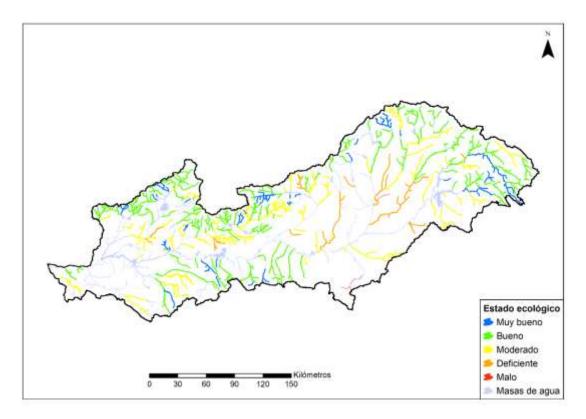


Figura 15. Estado ecológico en ríos naturales en la cuenca del Tajo

Masas de agua naturales de categoría lago

Dos de las siete masas de agua naturales de categoría lago designadas en la cuenca del Tajo (concretamente la masa Laguna de los Pájaros, y masa Laguna Grande y Laguna Chica) obtienen un estado ecológico por debajo de bueno, debido tanto a los resultados obtenidos en los indicadores biológicos como fisicoquímicos.

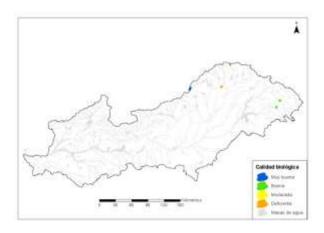


Figura 16. Calidad biológica en lagos naturales de la cuenca del Tajo

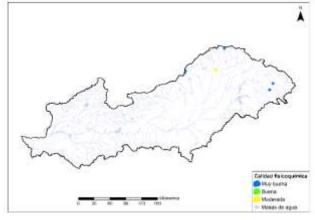


Figura 17. Calidad fisicoquímica en lagos naturales en la cuenca de Tajo

Ecotipo	MUY E	BUENO	BUI	ENO	MODI	RADO	DEFIC	CIENTE	MALO		Total general
L-T03		0,0%	1	50,0%	1	50,0%		0,0%		0,0%	2
L-T05	1	100,0%		0,0%		0,0%		0,0%		0,0%	1
L-T10		0,0%	2	100,0%		0,0%		0,0%		0,0%	2
L-T12		0,0%	1	100,0%		0,0%		0,0%		0,0%	1
L-T17		0,0%		0,0%		0,0%	1	100,0%		0,0%	1
	1	14,3%	4	57,1%	1	14,3%	1	14,3%		0,0%	7

Tabla 36. Resumen de la clasificación del estado ecológico de las masas de agua de categoría lago naturales de la cuenca del Tajo según su tipología

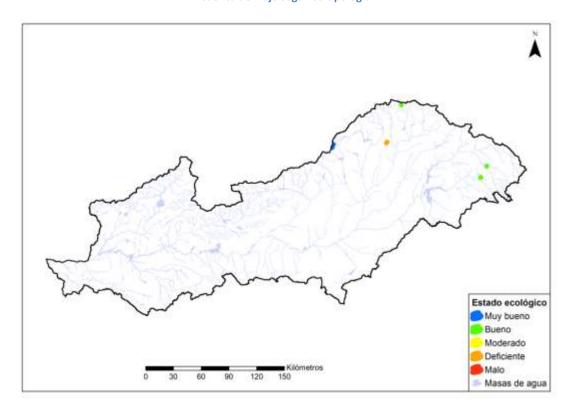


Figura 18. Estado ecológico en masas tipo lago natural en la cuenca del Tajo

4.1.1.2 Potencial ecológico en masas de agua muy modificadas

El 77% de los embalses consiguen un potencial ecológico a nivel de ciclo bueno o superior. Este porcentaje se reduce en el caso de las masas de agua artificiales o muy modificadas de categoría río (concretamente un 35%).

Potencial ecológico de las masas de aguas artificiales o muy modificadas							
Potencial	Ríos		Embalses		To	otal	
Bueno o superior	34	35%	124	77%	158	61%	
Moderado	43	44%	21	13%	64	24%	
Deficiente	21	21%	10	6%	31	12%	
Malo	0	0%	7	4%	7	3%	
Sin evaluar	0	0%	0	0%	0	0%	
Total	98	100%	162	100%	260	100%	

Tabla 37. Resumen de la clasificación del potencial ecológico de las masas superficiales artificiales o muy modificadas de la cuenca del Tajo

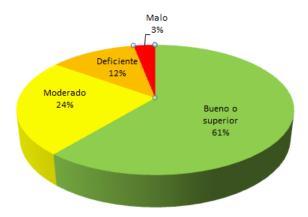
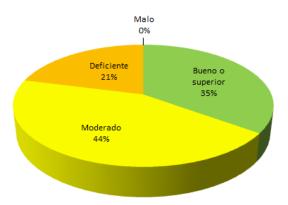



Figura 19. Potencial ecológico de las masas de agua muy modificadas o artificiales (ríos y embalses)

Deficiente Malo
4%

Moderado
13%

Bueno o superior
77%

Figura 20. Potencial ecológico ríos artificiales o muy modificados

Figura 21. Potencial ecológico embalses artificiales o muy modificados

Masas de agua HMWB y AW de categoría río

A continuación, se representa la calidad biológica, fisicoquímica e hidromorfológica obtenida en la evaluación del potencial ecológico a nivel de ciclo de las masas de agua superficial de categoría río con naturaleza muy modificada o artificial.

Respecto a la calidad hidromorfológica, se representa tanto los datos relativos al índice de calidad el del bosque de ribera (QBR), como a los resultados obtenidos tras la aplicación del Protocolo de Caracterización Hidromorfológica en determinadas masas de agua muy modificadas, considerando el peor valor de los 6 bloques de valoración (en 10 de las mismas se ha aplicado el protocolo de forma completa, es decir, han sido visitadas en campo; en el resto la aplicación del protocolo ha sido en gabinete, por lo que en estos casos el nivel de confianza es menor).

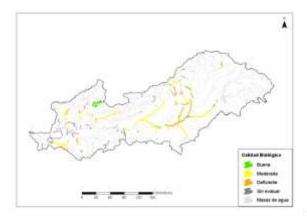


Figura 22. Calidad biológica en masas de agua rio HMWB y AW en la cuenca del Tajo

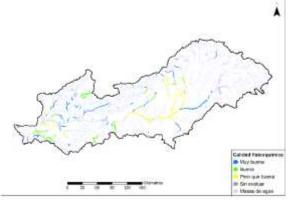


Figura 23. Calidad fisicoquímica en masas de agua río HMWV y AW en la cuenca del Tajo

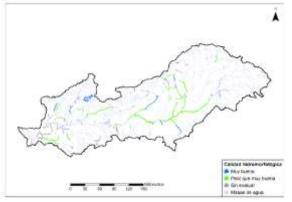


Figura 24. Calidad Hidromorfológica (IPH) en masas de agua río HMWB y AW en la cuenca del Tajo

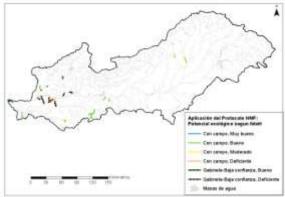


Figura 25. Calidad hidromorfológica (Protocolo de HMF: IIdeH) en masas de agua río HMWB y AW en la cuenca del Tajo

Ecotipo	BUEN	O O SUPERIOR	M	MODERADO		DEFICIENTE		MALO	Total general
R-T01	16	47,06%	13	30,23%	7	19,40%		0,00%	36
R-T05	0	0,00%	2	4,65%	1	33,30%		0,00%	3
R-T08	5	14,71%	2	4,65%		0,00%		0,00%	7
R-T11	7	20,59%	6	13,95%	4	23,50%		0,00%	17
R-T12	1	2,94%	1	2,33%	1	33,30%		0,00%	3
R-T15	1	2,94%	12	27,91%	3	18,80%		0,00%	16
R-T16	2	5,88%	2	4,65%	2	33,30%		0,00%	6
R-T17	0	0,00%	5	11,63%	3	37,50%		0,00%	8
R-T24	2	5,88%		0,00%		0,00%		0,00%	2
	34	100,00%	43	100,00%	21	21,40%		0,00%	98

Tabla 38. Resumen de la clasificación del potencial ecológico de las masas superficials lineales muy modificadas y artificiales de la cuenca del Tajo según su tipología

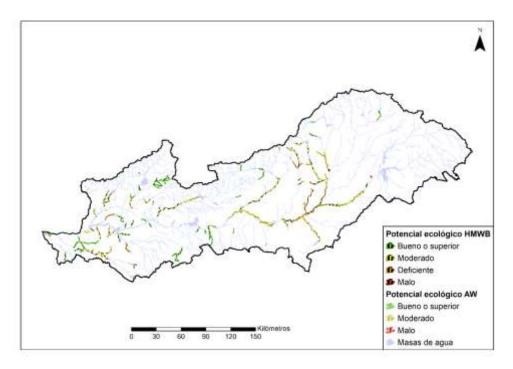


Figura 26. Potencial ecológico de las masas de agua superficial río HMWB y AW de la cuenca del Tajo

Masas de agua HMWB y AW de categoría lago (embalses)

Como se ha indicado anteriormente, el 77% de las masas de agua embalse de la cuenca obtienen un potencial ecológico bueno o superior. Si bien, hay que tener en cuenta que, en muchos de ellos, el nivel de confianza asociado a su evaluación de potencial es bajo, al tratarse de nuevas masas de agua en las que ha sido necesario evaluar su estado mediante extrapolación, derivación de los resultados del análisis de presiones e impactos, o criterio de experto. A medida que se disponga de una información más sólida procedente de las redes de seguimiento en estas nuevas masas de agua, este nivel de confianza mejorará.

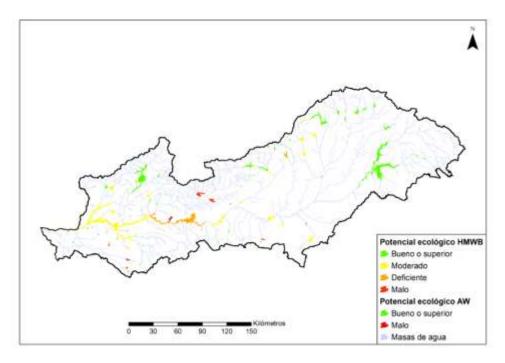


Figura 27. Potencial ecológico de las masas de agua HMWB y AW tipo lago (embalses) en la cuenca del Tajo

Ecotipo		BUENO O SUPERIOR		MODERADO DEFICIENTE		MODERADO DEFICIENTE MALO		MODERADO		ALO	Total general
E-T01	52	83,9%	7	11,3%	2	3,2%	1	1,6%	62		
E-T02	1	100,0%		0,0%		0,0%		0,0%	1		
E-T03	3	75,0%		0,0%		0,0%	1	25,0%	4		
E-T04	51	79,7%	6	9,4%	4	6,3%	3	4,7%	64		
E-T05	2	33,3%	3	50,0%	1	16,7%		0,0%	6		
E-T06		0,0%	2	100,0%		0,0%		0,0%	2		
E-T07	7	100,0%		0,0%		0,0%		0,0%	7		
E-T10	1	25,0%	1	25,0%		0,0%	2	50,0%	4		
E-T11	7	87,5%		0,0%	1	12,5%		0,0%	8		
E-T12		0,0%	2	50,0%	2	50,0%		0,0%	4		
	124	76,5%	21	13,0%	10	6,2%	7	4,3%	162		

Tabla 39. Resumen de la clasificación del potencial ecológico de las masas superficial poligonales muy modificadas y artificiales (embalses) de la cuenca del Tajo según su tipología

4.1.2 Estado químico

El 99% de las masas de agua superficial de la cuenca del Tajo tienen un buen estado químico, según la información a nivel de ciclo empleada para su evaluación.

Estado químico de las masas de agua superficiales								
Estado	Rí	os	La	gos	Emb	alses	То	tal
Bueno	337	98%	7	100%	161	99%	505	99%
No alcanza el buen estado	6	2%	0	0%	1	1%	7	1%
Total	343	100%	7	100%	162	100%	512	100%

Tabla 40. Resumen de la clasificación del estado químico de las masas de agua superficial de la cuenca del Tajo

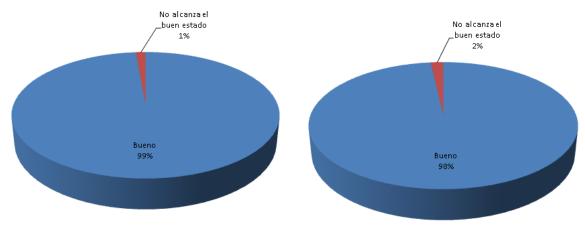


Figura 28. Estado químico de todas las masas de agua superficial

Figura 29. Estado químico en ríos

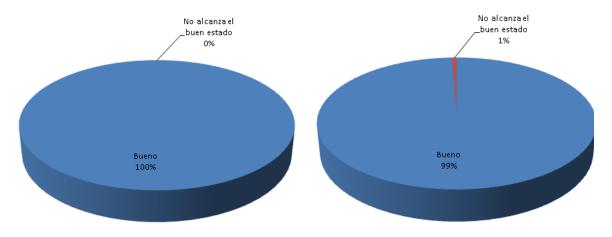


Figura 30. Estado químico en lagos

Figura 31. Estado químico en embalses

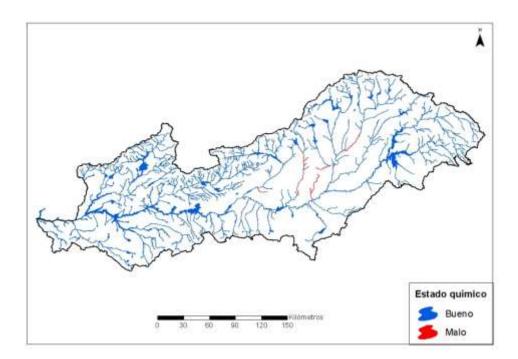


Figura 32. Estado químico de las masas de agua superficial de la cuenca del Tajo

Tal y como indica la Guía para la evaluación del estado (MITECO. octubre 2020), para aquellos casos en los que la contaminación química se deba a la presencia de las nuevas sustancias incorporadas con la Directiva 2013/39/UE y a la presencia de sustancias para las que se establecen NCA revisadas más estrictas, se podrá presentar, de forma separada a las demás sustancias identificadas en el anexo IV del RDSE, el impacto en el estado químico de tales sustancias, tal y como se recoge en el artículo 8 bis de la Directiva 2008/105/CE, traspuesto a través del artículo 31 del Reglamento de la Planificación Hidrológica. Por ello, en la siguiente figura se identifican las masas de agua con mal estado químico debido a la sustancia cipermetrina.

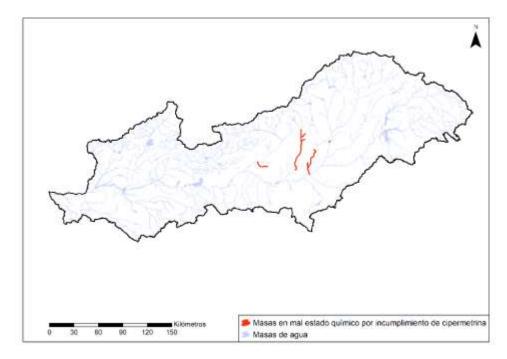


Figura 33. Masas de agua superficial con mal estado químico por incumplimientos de la NCA de cipermetrina

En los siguientes subapartados se representa geográficamente la información relativa al estado químico desglosada en función de la categoría y naturaleza de las masas de agua superficial.

4.1.2.1 Estado químico en masas de agua naturales

Masas de agua naturales de categoría río

Tres de las 245 masas naturales de categoría río de la cuenca no alcanzan el buen estado químico.

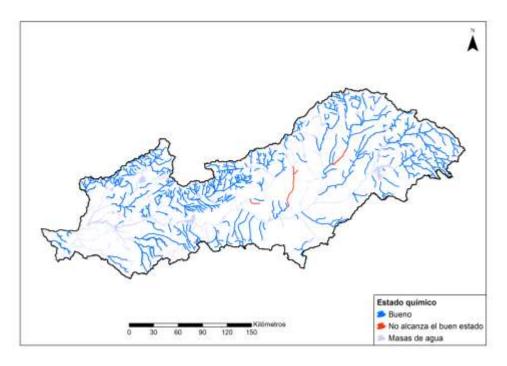


Figura 34. Estado químico de las masas de agua superficial tipo río natural de la cuenca del Tajo

Masas de agua naturales de categoría lago

Todas las masas de agua de categoría lago naturales de la cuenca del Tajo presentan un buen estado químico.

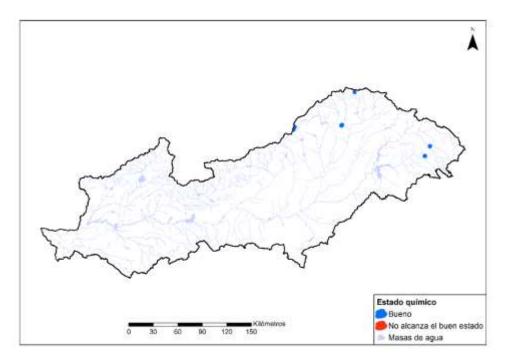


Figura 35. Estado químico de las masas de agua superficial tipo lago natural de la cuenca del Tajo

4.1.2.2 Estado químico en masas de agua muy modificadas y artificiales

Masas de agua HMWB y AW de categoría río

Tres de las 98 masas de agua muy modificadas o artificiales de categoría río existentes en la cuenca no alcanzan un buen estado químico.

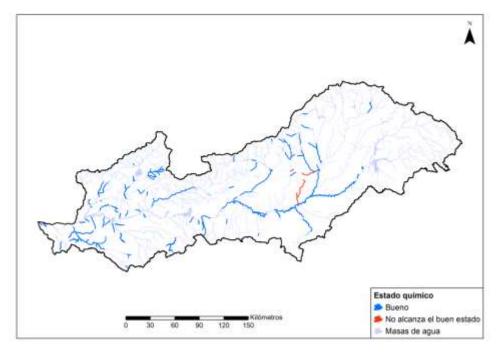


Figura 36. Estado químico de las masas superficial tipo rio HMWB y AW en la cuenca del Tajo

Masas de agua HMWB y AW de categoría lago (embalses)

Tan solo una masa de agua embalse no alcanza el buen estado químico. Se trata del embalse del Rey, debido a los valores detectados por las redes de seguimiento de cipermetrina.

Figura 37. Estado químico masa superficial tipo lago (embalses) HMWB y AW en la cuenca del Tajo

4.1.3 Estado final de las masas de agua superficial

Tal y como muestra la siguiente tabla, el 61% de las masas de agua superficial de la cuenca del Tajo tienen un estado final bueno o mejor.

Estado de las masas de agua superficiales								
Estado	F	líos	La	gos	Emb	alses	То	tal
Bueno o mejor	183	53%	5	71%	123	76%	311	61%
Peor que bueno	160	47%	2	29%	39	24%	201	39%
Sin evaluar	0	0%	0	0%	0	0%	0	0%
Total	343	100%	7	100%	162	100%	512	100%

Tabla 41. Resumen de la clasificación del estado de las masas de agua superficial de la cuenca del Tajo

Ha sido evaluado el estado en todas las masas de agua superficial del tercer ciclo de planificación.

Figura 38. Estado final de todas las masas de agua superficial

Figura 39. Estado final en ríos

Figura 40. Estado final en lagos

Figura 41. Estado final en embalses

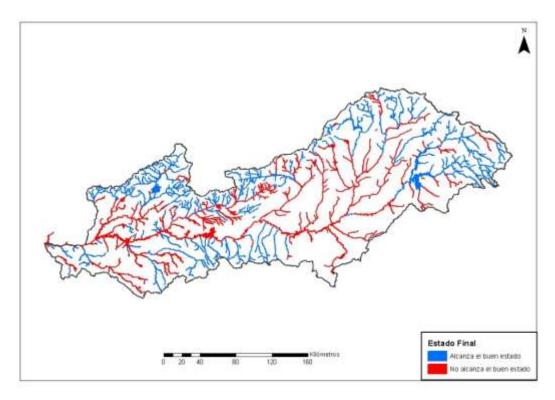


Figura 42. Estado final de las masas de agua superficiales de la cuenca del Tajo

4.2 Evolución del estado de las masas de agua superficial

Se ha realizado un estudio de la valoración del estado de las masas de agua del ciclo anterior, para estudiar con criterios homogéneos la evolución y tendencia del estado de las masas de aguas superficial en la cuenca del Tajo. Para ello, se ha realizado un análisis del estado con los datos del ciclo anterior aplicando las nuevas normas establecidas en las guías de estado y en el Real Decreto 817/2015, pues en el plan anterior se valoraron siguiendo los criterios de la IPH.

Con base a este análisis, se presenta en las siguientes tablas un resumen de los resultados de la evolución del estado de las masas de agua superficial desarrollada en el segundo y tercer ciclo de planificación. La evolución se muestra agrupando inicialmente las masas de agua que presentaron una misma valoración en el segundo ciclo de planificación y desglosando para cada grupo su valoración correspondiente al tercer ciclo. Esta evolución se agrupa en tres apartados denominados "mejora", "mantenimiento" o "deterioro" de acuerdo a la valoración inicial y la finalmente registrada.

Como se indicaba al comienzo del apartado, para analizar el deterioro, se ha tenido que evaluar el estado ecológico de las masas en el segundo ciclo aplicando la normativa vigente, es decir, según RD 817/2015 y la Guía para la evaluación del estado de las aguas superficiales y subterráneas (Instrucción de 14 de octubre de 2020 del Secretario de Estado de Medio Ambiente (SEMA) por la que se establecen los Requisitos Mínimos para la Evaluación del) Estado de las Masas de Agua en el tercer ciclo de la Planificación Hidrológica.

El análisis se desarrolla por categoría para cada naturaleza de masa de agua, incluyendo finalmente un resumen de las masas cuya evolución de su estado ecológico o químico implica una mejora o un deterioro en la valoración del estado entre ambos ciclos de planificación.

Hay que señalar que en el caso de las masas de agua que en el segundo ciclo tenían asociados objetivos menos rigurosos, se ha valorado la evolución de su estado o potencial ecológico siguiendo los mismos criterios que para el resto de masas.

También cabe señalar que, debido a que en el actual ciclo de planificación se han designado nuevas masas de agua (pasando de 323 masas de agua superficial en el segundo ciclo, a 512 masas de agua superficial en el tercer ciclo), la evolución únicamente se hace con respecto a las 323 masas del segundo ciclo. Para analizar la evolución en aquellas masas que en este nuevo ciclo han sido segmentadas, se ha considerado el peor estado de las masas segmentadas respecto al estado de la masa "madre" del segundo ciclo.

4.2.1 Evolución del estado y potencial ecológico

A continuación, se representan los resultados obtenidos respecto a la evolución del estado y potencial ecológico de las masas de agua superficial entre el segundo y tercer ciclo de planificación.

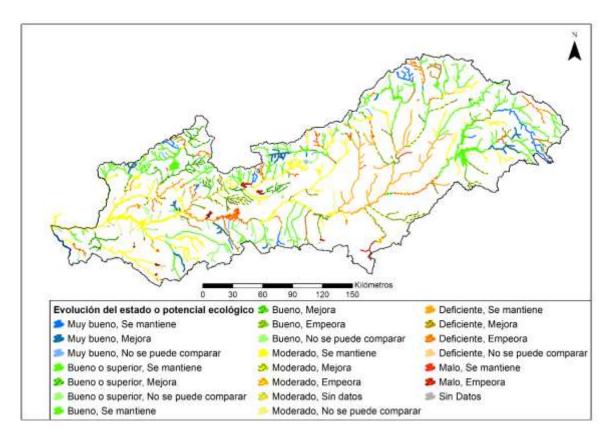


Figura 43. Evolución del estado ecológico en las masas de agua de la cuenca del Tajo

4.2.1.1 Masas de agua naturales

Masas de agua naturales de categoría río:

Valoración segui planificaci			Valor				
Estado ecológico	Total Nº Masas	Muy bueno	Bueno	Moderado	Deficiente	Malo	Sin evaluar
Muy bueno	20	8	10	2	0	0	0
Bueno	88	11	64	12	1	0	0
Moderado	53	0	13	36	3	1	0
Deficiente	24	0	0	13	11	0	0
Malo	6	0	0	1	4	1	0
Sin evaluar	0	0	0	0	0	0	0
Total	191	19	88	63	19	2	0

Mejora del estado ecológico	42	22%
Mantenimiento del estado ecológico	120	63%
Deterioro del estado ecológico	29	15%

Tabla 42. Evolución del estado ecológico de los ríos naturales de la cuenca del Tajo

En primer lugar, indicar que ha sido posible realizar la evaluación del estado ecológico de todas las masas de esta categoría y naturaleza.

De los resultados obtenidos se observa que la mayor parte de los ríos naturales han mantenido su estado ecológico con respecto al plan anterior. El porcentaje de casos de mejora supera ligeramente a los de deterioro. En cuanto a los ríos que se han deteriorado cabe destacar que, en la mayor parte de ellos, este deterioro ha dado lugar a un cambio de *bueno* a *moderado* o de muy bueno a bueno. En contraposición, más de la mitad de los ríos naturales que han mejorado han conseguido alcanzar el buen estado ecológico; el resto de masas que han mejorado siguen manteniendo un estado ecológico peor que bueno.

En términos generales, el número de ríos naturales en *muy buen estado ecológico* es similar al obtenido durante el segundo ciclo de planificación. Por otro lado, ha aumentado sensiblemente el número de masas clasificadas en *moderado*, mientras que el número de masas en *mal* estado ecológico se ha reducido considerablemente en este tercer ciclo de planificación.

Como se ha indicado anteriormente, en el Plan de cuenca del ciclo anterior la evaluación de estado fue realizada siguiendo los criterios establecidos por la IPH. Para analizar la evolución de estado entre ciclos de planificación se han aplicado los criterios requeridos en el RD 817/2015 en los conjuntos de datos de ambos periodos; para ciertos indicadores, los límites establecidos en el RD 817/2015 son más exigentes que los marcados por la IPH.

Masas de agua naturales de categoría lago:

Valoración primer c	clo planificación Valoración segundo ciclo planificación						
Estado ecológico	Total Nº Masas	Muy bueno	Bueno	Moderado	Deficiente	Malo	Sin evaluar
Muy bueno	0	0	0	0	0	0	0
Bueno	5	0	4	0	1	0	0
Moderado	2	1	0	1	0	0	0
Deficiente	0	0	0	0	0	0	0
Malo	0	0	0	0	0	0	0
Sin evaluar	0	0	0	0	0	0	0
Total	7	1	4	1	1	0	0

Mejora del estado ecológico	1	14%
Mantenimiento del estado ecológico	5	71%
Deterioro del estado ecológico	1	14%

Tabla 43. Evolución del estado ecológico de los lagos naturales de la cuenca del Tajo

En este tercer ciclo de planificación ha sido posible realizar la evaluación del estado ecológico en todos los lagos. La mayor parte de los lagos naturales mantienen el buen estado ecológico alcanzado en el ciclo anterior. Se observa una mejora en el estado ecológico del Complejo Lagunar de Humedales Temporales de Peñalara, y un deterioro en la calidad de la Laguna de Beleña que conlleva la no consecución del objetivo medioambiental asociado al mantenimiento del buen estado de la masa de agua.

4.2.1.2 Masas de agua muy modificadas y artificiales

Masas de agua de categoría río, muy modificadas y artificiales:

Valoración segundo c	iclo planificación	Valoración tercer ciclo planificación				
Potencial ecológico	Total Nº Masas		Moderado	Deficiente	Malo	Sin evaluar
Bueno o superior	13	7	6	0	0	0
Moderado	16	2	13	1	0	0
Deficiente	27	0	12	15	0	0
Malo	0	0	0	0	0	0
Sin evaluar	2	0	2	0	0	0
Total	58	9	33	16	0	0

Mejora del potencial ecológico	14	24%
Mantenimiento del potencial ecológico	35	60%
Deterioro del potencial ecológico	7	12%
No es posible la evaluación	2	4%

Tabla 44. Evolución del potencial ecológico de los ríos muy modificados y artificiales de la cuenca del Tajo

La mayor parte de los ríos muy modificados y artificiales han mantenido su potencial ecológico con respecto al segundo ciclo de planificación. El número de masas que mejoran es significativo, observándose un desplazamiento del potencial ecológico *deficiente* hacia el *moderado* y del moderado a *bueno o superior*.

En términos generales, se puede afirmar que el número de ríos muy modificados y artificiales con potencial ecológico *moderado* ha aumentado significativamente, mientras que el número de masas con potencial *bueno o superior y deficiente* se ha visto reducido. Asimismo, en este ciclo no se han dado casos de masas sin evaluar, mientras que en el ciclo anterior hubo dos masas que no pudieron ser evaluadas.

Se ha de resaltar que para la definición de los límites de clases (LCC) de las masas de categoría río muy modificadas, se ha empleado el método B recogido en la Guía para la evaluación del estado elaborada por el MITECO en octubre de 2020, evaluándose por tanto mediante aproximación. Esto ha conllevado que en ciertos casos se hayan aplicado los LCC asociados a masas de agua naturales (aumentando el nivel de exigencia de la evaluación), al no contar con información relativa a elementos de calidad más sensibles a las alteraciones hidromorfológicas responsables de la naturaleza de estas masas de agua (por ejemplo, datos de fauna piscícola), o no emplear los resultados relativos a macrófitos por su bajo nivel de confianza.

Masas de aqua de	categoría lago	(embalses), mu	v modificadas v	artificiales:

Valoración segundo	ciclo planificación	Valoración tercer ciclo planificación				
Potencial ecológico	Total № Masas	Bueno o superior	Moderado	Deficiente	Malo	Sin evaluar
Bueno o superior	42	30	9	2	1	0
Moderado	14	2	8	2	2	0
Deficiente	8	0	0	4	4	0
Malo	2	0	0	2	0	0
Sin evaluar	1	0	1	0	0	0
Total	67	32	18	10	7	0

Mejora del potencial ecológico	4	6%
Mantenimiento del potencial ecológico	42	63%
Deterioro del potencial ecológico.	20	30%
No es posible la evaluación	1	1%

Tabla 45. Evolución del potencial ecológico de los embalses muy modificados y artificiales de la cuenca del Tajo

Los embalses muy modificados y artificiales, en su mayoría mantienen el potencial ecológico del segundo ciclo, apreciándose un deterioro en un tercio de las masas, con un número considerable de casos que pasan de bueno o superior a moderado, deficiente o malo.

Tan solo en 4 masas se observa una mejora de la calidad, en 2 de ellas cambian de mal estado a bueno en el tercer ciclo (al mejorar de moderado a bueno).

Un total de 7 masas que en el segundo ciclo presentaban un potencial ecológico bueno o superior (1), moderado (2) o deficiente (4), han empeorado significativamente su calidad al pasar a un potencial ecológico malo.

En términos generales, aunque el número de masas con potencial ecológico bueno o superior desciende respecto al ciclo anterior, en la mayoría de las masas la tendencia es el mantenimiento del mismo potencial ecológico del segundo ciclo de planificación, percibiéndose una ligera mejora en tan sólo 4 masas.

A tenor de los resultados obtenidos, se observa la necesidad de programar medidas que permitan hacer frente de forma eficaz al riesgo orgánico o por nutrientes en los embalses de la cuenca, al ser las presiones puntuales y las presiones difusas las que conllevan que un elevado porcentaje de embalses no alcancen un buen potencial ecológico.

4.2.2 Evolución del estado químico

A continuación, se representan los resultados obtenidos respecto a la evolución del estado químico de las masas de agua superficial entre el segundo y tercer ciclo de planificación.

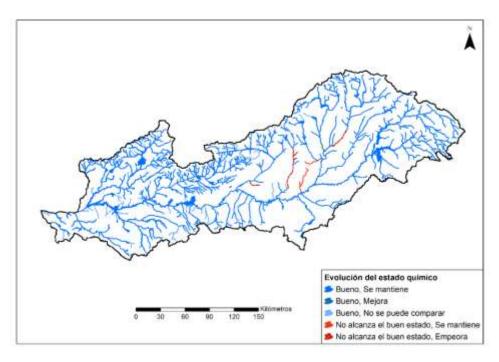


Figura 44. Evolución estado químico en las masas de agua de agua en la cuenca del Tajo

4.2.2.1 Masas de agua naturales

Masas de agua naturales de categoría río:

Valoración segundo ciclo planificación		Valoración tercer ciclo planificación			
Estado químico Total № Masas		Bueno	No alcanza el buen estado	Sin evaluar	
Bueno	191	188	3	0	
No alcanza el buen estado	0	0	0	0	
Sin evaluar	0	0	0	0	
Total	191	188	3	0	

Mejora del estado químico	0	0%
Mantenimiento del estado químico	188	98%
Deterioro del estado químico	3	2%

Tabla 46. Evolución del estado químico de los ríos naturales de la cuenca del Tajo

En los ríos naturales, la evolución del estado químico demuestra un empeoramiento con respecto al segundo ciclo, ya que en el segundo ciclo todas las masas estaban en buen estado químico y en el actual ciclo, se registran 3 masas con un mal estado químico.

En relación al empeoramiento detectado, es importante resaltar que la versión consolidada del RDSE, que data del 29 de diciembre de 2016, identifica las nuevas sustancias de la Directiva 2013/39/UE, e incluye normas de calidad actualizadas para diversas sustancias. Estas nuevas normas de calidad son aplicables desde el 22 de diciembre de 2018, por lo tanto, han sido tomadas en consideración por primera vez en la evaluación del estado químico de los planes del tercer ciclo.

En este nuevo ciclo para evaluar el estado químico con base al cumplimiento de las normas de calidad ambiental (NCA), se han seguido las pautas para el cálculo y la evaluación definidas en la Guía de evaluación de estado de masas de agua elaborada por el MITECO.

Masas de agua naturales de categoría lago:

Valoración segundo ciclo planificación		Valoración tercer ciclo planificación		
Estado químico	Total Nº Masas	Bueno	No alcanza el buen estado	Sin evaluar
Bueno	7	7	0	0
No alcanza el buen estado	0	0	0	0
Sin evaluar	0	0	0	0
Total	7	7	0	0

Mejora del estado químico	0	0%
Mantenimiento del estado químico	7	100%
Deterioro del estado químico	0	0%

Tabla 47. Evolución del estado químico de los lagos naturales de la cuenca del Tajo

En los lagos la situación del estado químico no ha variado con respecto al plan anterior, de forma que todas las masas de esta categoría se mantienen en buen estado químico.

4.2.2.2 Masas de agua muy modificadas y artificiales

Masas de agua de categoría río, muy modificadas y artificiales:

Valoración segundo ciclo planificación		Valoración tercer ciclo planificación			
Estado químico	Total Nº Masas	Bueno	No alcanza el buen estado	Sin evaluar	
Bueno	55	54	1	0	
No alcanza el buen estado	3	1	2	0	
Sin evaluar	0	0	0	0	
Total	58	55	3	0	

Mejora del estado químico	1	2%
Mantenimiento del estado químico	56	96%
Deterioro del estado químico	1	2%

Tabla 48. Evolución del estado químico de los ríos muy modificados y artificiales

Los ríos muy modificados y artificiales constituyen el único grupo en el que determinadas masas no alcanzaron el buen estado químico en el anterior ciclo de planificación. En el actual ciclo, dos de esas masas de agua mantienen el mal estado químico y una de ellas mejora. La mayor parte mantienen el buen estado químico contemplado en el plan anterior, aunque se observa el empeoramiento de una masa (debido a una sustancia, la cipermetrina, no considerada en la evaluación del estado químico del segundo ciclo).

Masas de agua de categoría lago (embalses), muy modificadas y artificiales:

Valoración segundo ciclo planificación		Valoración tercer ciclo planificación			
Estado químico	Total Nº Masas	Bueno	No alcanza el buen estado	Sin evaluar	
Bueno	67	66	1	0	
No alcanza el buen estado	0	0	0	0	
Sin evaluar	0	0	0	0	
Total	67	66	1	0	

Mejora del estado químico	0	0%
Mantenimiento del estado químico	66	99%
Deterioro del estado químico	1	1%

Tabla 49. Evolución del estado químico de los embalses muy modificados y artificiales de la cuenca del Tajo

En los embalses muy modificados y artificiales, sólo hay una masa que experimenta un empeoramiento de la calidad con respecto al ciclo anterior en el que presentaba un buen estado químico, el resto de embalses mantienen el buen estado químico (debido a una sustancia, la cipermetrina, no considerada en la evaluación del estado químico del segundo ciclo).

4.2.3 Evolución del estado final de las masas de agua superficial

Analizando la evolución del estado final de las masas de agua superficial, se observa un bajo porcentaje de masas de agua que mejoran su estado, pero es mayor el aumento de masas que empeoran a mal estado con respecto el ciclo anterior. Asimismo, se ha conseguido eliminar el número de masas sin evaluar.

Valoración segu	ındo ciclo planificación	Valoración tercer ciclo planificación			
Estado final	Total № Masas	Bueno o mejor	Peor que bueno	Sin evaluar	
Bueno o mejor	168	133	35	0	
Peor que bueno	152	18	134	0	
Sin evaluar	3	0	3	0	
Total	323	152	171	0	

Mejora el estado	18	5,6%
Mantenimiento del estado	267	82,7%
Deterioro del estado	35	10,8%
No es posible la evaluación	3	0,9%

Tabla 50. Evolución del estado final de las masas de agua superficial de la cuenca del Tajo

Se ha de tener en cuenta que para analizar la evolución en aquellas masas que en este nuevo ciclo se han dividido, se ha considerado el peor estado de las masas segmentadas respecto al estado de la masa "madre" del segundo ciclo, por lo que el grado de exigencia de la comparativa es mayor que si se empleara el valor de la mediana de todos los datos disponibles.

Aunque la mayor parte de las masas han mantenido el estado alcanzado en el ciclo de planificación anterior, es preciso centrar el foco de atención en los casos de mejora y deterioro

del estado y evaluarlo conjuntamente con el riesgo obtenido en el análisis DPSIR para la determinación de objetivos medioambientales.

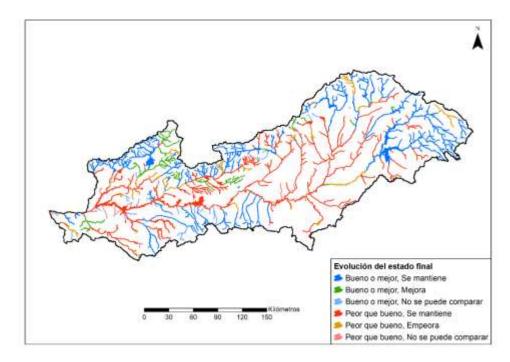


Figura 45. Evolución estado final de las masas de agua en la cuenca del Tajo

4.2.4 Mejora del estado de las masas de agua superficial

En este tercer ciclo de planificación se han registrado mejoras del estado o potencial ecológico en 61 masas, lo que supone aproximadamente un 19% del total. En el caso del estado químico, tan solo una masa ha mejorado.

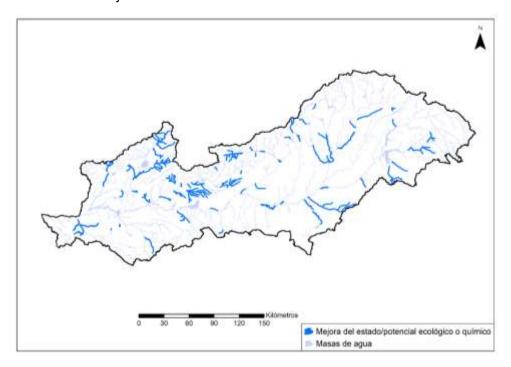


Figura 46. Mejora del estado/potencial ecológico o del estado químico de las masas de agua superficial de la cuenca del Tajo

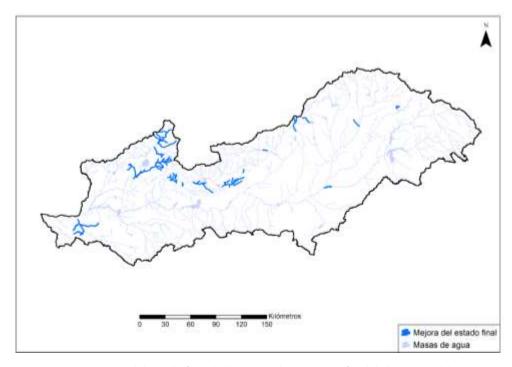


Figura 47. Mejora del estado final de las masas de agua superficial de la cuenca del Tajo

A continuación, se relacionan las masas de agua del segundo ciclo que han mejorado su estado entre ambos ciclos de planificación, atendiendo a su estado o potencial ecológico, su estado químico y su estado final. Se muestran también los códigos de las masas de agua del tercer ciclo de planificación asociadas a estas masas de agua del segundo ciclo que han mejorado su estado; en el caso de estar vinculadas a diversas masas del tercer ciclo, se identifica mediante un código de colores la evolución del estado (azul si mejora, negro si se mantiene).

Código Masa 2º ciclo	Nombre Masa 2º ciclo	Códigos Masas 3er a 2º ciclo Ciclo asociadas		Mejora Estado Químico	Mejora Estado Final
ES030MSPF0101021	Río Tajo en Aranjuez	ES030MSPF0101021	Х		Х
ES030MSPF0207010	Barranco del Reato hasta el E.La Tajera	ES030MSPF0207010	Х		Х
ES030MSPF0313010	MSPF0313010 Arroyo de las Dueñas hasta su confluencia en el Henares ES030MSPF0313010		х		Х
ES030MSPF0405010	Río Guadarrama desde R. Navalmedio hasta Ayo. Loco	ES030MSPF0405010	Х		Х
ES030MSPF0432010	Río Manzanares hasta el embalse de Santillana	ES030MSPF0432010	Х		Х
ES030MSPF0457040	Complejo lagunar de humedales temporales de Peñalara	ES030MSPF0457040	х		Х
ES030MSPF0455040	Laguna Grande de Peñalara	ES030MSPF0455040	Х		Х
ES030MSPF0509021	Río Alberche desde Embalse Puente Nuevo hasta Embalse San Juan	ES030MSPF0509021	х		Х
ES030MSPF0713010	Ggts. Mayor, San Gregario y Cascarones	ES030MSPF0713010	х		Х
ES030MSPF0715010	Arroyo del Monte hasta R.Tiétar	ES030MSPF0715010	Х		Х
ES030MSPF0730010	R. Guadyerbas desde A. de la Concha hasta E. Navalcan	ES030MSPF0730110 ES030MSPF0730210 ES030MSPF0730410	х		х

Código Masa 2º ciclo	Nombre Masa 2º ciclo	Códigos Masas 3er Ciclo asociadas	Mejora Estado/ Potencial Ecológico	Mejora Estado Químico	Mejora Estado Final
ES030MSPF0736010	A. de la Aliseda hasta Garganta Torinas	ES030MSPF0736010	х		Х
ES030MSPF0903020	Embalse Valdeobispo	ES030MSPF0903020	Х		Х
ES030MSPF0919010	Rvra. del Bronco y Ayo. de los Jarales, hasta R. Alagón	ES030MSPF0919010	Х		Х
ES030MSPF0920010	R. Ambroz y otros hasta E. Valdeobispo	ES030MSPF0920110 ES030MSPF0920210	х		X
ES030MSPF0924010	R. Cuerpo de Hombre tramo piscícola	ES030MSPF0924010	Х		Х
ES030MSPF0929030	Embalse Baños	ES030MSPF0929030	Х		Х
ES030MSPF1006010	R. Erjas desde pto Frontera hasta E. Cedillo	ES030MSPF1006010	Х		Х
ES030MSPF1022010	R. Salor desde R. Ayuela hasta E. Cedillo	ES030MSPF102211 ES030MSPF1022210 ES030MSPF1022310	х		х
ES030MSPF0420021	Río Jarama desde Arroyo Valdebebas hasta Río Henares	ES030MSPF0420021		Х	
ES030MSPF0433021	Arroyo de los Prados	ES030MSPF0433021	Х		
ES030MSPF0440021	Arroyo de Viñuelas	ES030MSPF0440021	Х		
ES030MSPF0453010	Arroyo de Canencia hasta su confluencia con el Lozoya	ES030MSPF0453010	Х		
ES030MSPF0506021	Río Alberche desde Embalse Picadas hasta Río Perales	ES030MSPF0506021	Х		
ES030MSPF0513010	Río Alberche desde R.Piquillo hasta Gta. Royal	ES030MSPF0513010	Х		
ES030MSPF0515010	A de Marigarcía hasta R. Alberche	ES030MSPF0515010	Х		
ES030MSPF0527010	Garganta de Iruelas y otros hasta E.de Burguillo	ES030MSPF0527010	Х		
ES030MSPF0528010	Arroyo de Arredondo hasta E. Burguillo	ES030MSPF0528010	х		
ES030MSPF0604021	Río Tajo aguas abajo del Embalse Castrejón	ES030MSPF0604021	Х		
ES030MSPF0606021	Río Tajo desde confluencia del Guadarrama hasta Embalse Castrejón	ES030MSPF0606021	Х		
ES030MSPF0622021	Río Algodor desde Embalse del Castro hasta Río Tajo	ES030MSPF0622021	х		
ES030MSPF0624021	Río Algodor desde Embalse Finisterre hasta Embalse del Castro	ES030MSPF0624021	х		
ES030MSPF0627010	A. Martín Román hasta confluencia con R. Tajo	ES030MSPF0627110 ES030MSPF0627210	х		
ES030MSPF0710010	A. Porquerizo desde A. del Puente Mocho hasta R. Tiétar	ES030MSPF0710010	Х		
ES030MSPF0714010	A. de Casas y A. de Don Blasco y Quebrada de los Trigales	ES030MSPF0714010	Х		
ES030MSPF0717010	A. de Toril y afluentes hasta Ayo. de Santa Maria	ES030MSPF0717010	Х		
ES030MSPF0718010	A. de Fresnedoso y afluentes hasta Ayo. de Santa Maria	ES030MSPF0718110	Х		
	Ayo. ue Janta Iviana	ES030MSPF0718210			

Código Masa 2º ciclo	Nombre Masa 2º ciclo	Códigos Masas 3er Ciclo asociadas	Mejora Estado/ Potencial Ecológico	Mejora Estado Químico	Mejora Estado Final
ES030MSPF0721010	Arroyo Carcaboso hasta el R.Tiétar	ES030MSPF0721010	Х		
ES030MSPF0805021	Rivera de Gata desde Embalse Rivera de Gata hasta Río Arrago	ES030MSPF0805021	х		
ES030MSPF0807010	Rivera de Gata hasta E. Rivera de Gata	ES030MSPF0807010	Х		
ES030MSPF0908010	Arroyo Encín hasta R. Alagón	ES030MSPF0908010	Х		
ES030MSPF0912010	Arroyo de las Monjas hasta R. Alagón	ES030MSPF0912010	Х		
ES030MSPF1005021	Río Tajo desde Embalse Azután hasta Embalse Valdecañas	ES030MSPF1005021	Х		
	Arroyo de Barbaón y otros hasta E.	ES030MSPF1017110			
ES030MSPF1017010	Alcántara	ES030MSPF1017210	Х		
	Alcantara	ES030MSPF1017310			
ES030MSPF1019010	Garganta de Descuernacabras hasta E. de Torrejón-Tajo	ES030MSPF1019010	Х		
ES030MSPF1028010	Río Sever desde pto. fronterizo a E. Cedillo. PT05TEJO0905	ES030MSPF1028010	х		
ES030MSPF1029010	R. Sever de cabecera a punto fronterizo. (PT05TEJ00918)	ES030MSPF1029010	Х		
ES030MSPF1041030	Embalse Casar de Cáceres	ES030MSPF1041030	Х		
ES030MSPF1043030	Embalse Petit I	ES030MSPF1043030	Х		
ES030MSPF0116010	Arroyo Salado hasta su confluencia con R. Tajo	ES030MSPF0116010	Х		
ES030MSPF0122010	Río Cifuentes hasta desembocadura en Río Tajo	ES030MSPF0122010	Х		
ES030MSPF0132010	Río Guadiela desde R. Escabas hasta E. Buendía	ES030MSPF0132010	Х		
ES030MSPF0135010	Río Guadiela desde nacimiento hasta E. Molino de Chincha	ES030MSPF0135110 ES030MSPF0135210	Х		
ES030MSPF0137010	Río Mayor desde su nacimiento hasta E. Buendía	ES030MSPF0137010	х		
ES030MSPF0138010	Río Guadamajud hasta E. Buendía	ES030MSPF0138010	Х		
ES030MSPF0142010	Río Escabas desde R. Trabaque hasta R. Guadiela	ES030MSPF0142010	Х		
ES030MSPF0427021	Río Manzanares a su paso por Madrid	ES030MSPF0427021	Х		
ES030MSPF0501021	Río Alberche desde Embalse Cazalegas hasta Río Tajo	ES030MSPF0501021	Х		
ES030MSPF0302010	Río Henares desde Arroyo del Sotillo hasta Río Torote	ES030MSPF0302010	х		
ES030MSPF0315010	Río Badiel hasta su confluencia con el Río Henares	ES030MSPF0315010	х		
ES030MSPF0412010	Arroyo del Batan hasta E.Valmayor	ES030MSPF0412010	Х		
ES030MSPF0419010	Río Jarama desde Río Henares hasta E. del Rey	ES030MSPF0419010	х		
ES030MSPF0421021	Río Jarama desde Río Guadalix hasta Arroyo Valdebebas	ES030MSPF0421021	Х		

Tabla 51. Masas de agua superficial cuyo estado ha mejorado

4.2.5 Empeoramiento del estado de las masas de agua superficial

En cuanto a los casos de deterioro del estado, se han registrado deterioros del estado/potencial ecológico en 57 masas del segundo ciclo y deterioros del estado químico en 5 masas de agua.

Tanto los deterioros en el estado químico, como aquellos vinculados al descenso de un estado/potencial ecológico bueno o superior a un estado por debajo de bueno, han conllevado el deterioro del estado final de las masas, concretamente de 35 del segundo ciclo.

En términos generales no se han producido graves deterioros, pero sí es fundamental hacer un seguimiento exhaustivo de estas masas y proponer las medidas adicionales que sean necesarias para restituirlas a la situación anterior.

La mayoría de los casos de deterioro son debidos al estado o potencial ecológico. La mayor parte de los incumplimientos que se han registrado, se deben principalmente a los indicadores biológicos, y en menor medida a los indicadores fisicoquímicos e hidromorfológicos.

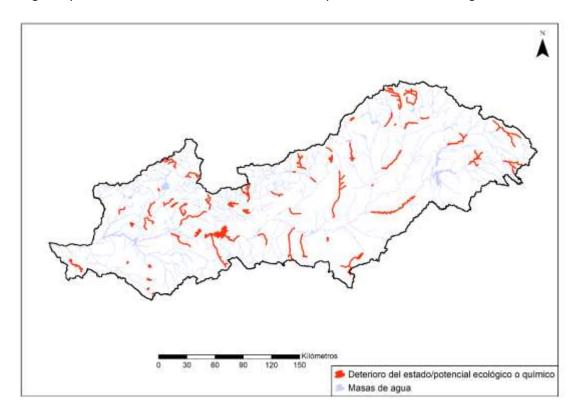


Figura 48. Deterioro del estado/potencial ecológico o químico de las masas de agua superficial de la cuenca del Tajo

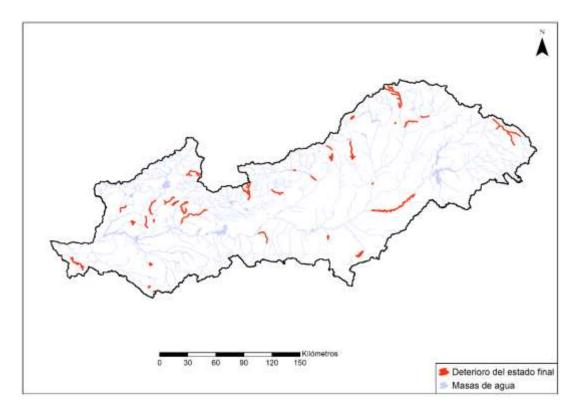


Figura 49. Deterioro del estado final de las masas de agua superficial de la cuenca del Tajo

Atendiendo a los resultados por categoría y naturaleza de las masas de agua designadas en el segundo ciclo, observamos que en los ríos naturales se produce el mayor número de casos de deterioro del estado final (15), seguido de los embalses (13), siendo los embalses los que presentan el mayor porcentaje de deterioro en datos relativos, con el 19% de las masas con deterioro respecto al estado final del segundo ciclo.

Deterioro del estado final					
Naturaleza masa 2º ciclo	Categoría masa 2º ciclo	Total Nº Masas	% Masas		
Naturales	Río	15	8%		
ivaturales	Lago	1	14%		
Muy modificadas y	Río	6	10%		
artificiales	Embalse	13	19%		

Tabla 52. Deterioro del estado final por categoría y naturaleza de masa de agua superficial

En la siguiente tabla se relacionan las masas de agua del segundo ciclo que han sufrido algún tipo de deterioro entre ambos ciclos de planificación, atendiendo a su estado o potencial ecológico, su estado químico y su estado final. Se muestran también los códigos de las masas de agua del tercer ciclo de planificación asociadas a estas masas de agua del segundo ciclo que han sufrido algún tipo de deterioro; en el caso de estar vinculadas a diversas masas del tercer ciclo, se identifica mediante un código de colores la evolución del estado (rojo si empeora, negro si se mantiene, azul si mejora), permitiendo de este modo identificar las masas de agua del tercer ciclo que provocan dicho deterioro.

Código Masa 2º ciclo	Nombre Masa 2º ciclo	Códigos Masas 3er Ciclo asociadas	Deterioro Estado/ Potencial Ecológico	Deterioro Estado Químico	Deterioro Estado Final
ES030MSPF0102021	Río Tajo desde Arroyo del Álamo hasta Azud del Embocador	ES030MSPF0102021	Х		Х
ES030MSPF0103021	Río Tajo desde Embalse de Estremera hasta Arroyo del Álamo	ES030MSPF0103021	X		Х
ES030MSPF0128010	Río Gallo desde su nacimiento hasta Corduente	ES030MSPF0128110 ES030MSPF0128210 X			Х
ES030MSPF0306010	Río Henares desde Río Bornoba hasta Río Sorbe	ES030MSPF0306010	Х		Х
ES030MSPF0308010	Río Henares desde Arroyo de la Vega hasta R.Cañamares	ES030MSPF0308010	Х		Х
ES030MSPF0318010	Río Sorbe hasta E. Beleña	ES030MSPF0318110 ES030MSPF0318310	X		Х
ES030MSPF0330040	Lagunas Grande de Beleña y Chica de Beleña	ES030MSPF0330040	Х		Х
ES030MSPF0411020	Embalse Valmayor	ES030MSPF0411020	X		Х
ES030MSPF0414011	Arroyo de la Jarosa desde E. de la Jarosa	ES030MSPF0414011	Х		Х
ES030MSPF0418020	Embalse del Rey	ES030MSPF0418020		Х	Х
ES030MSPF0429020	Embalse El Pardo	ES030MSPF0429020	Χ		Χ
ES030MSPF0430021	Río Manzanares desde Embalse Santillana hasta Embalse El Pardo	ES030MSPF0430021	Х		Х
ES030MSPF0449020	Embalse La Pinilla	ES030MSPF0449020	Х		Х
ES030MSPF0507020	Embalse Picadas	ES030MSPF0507020	Х		Х
ES030MSPF0510020	Embalse Puente Nuevo	ES030MSPF0510020	Х		Х
ES030MSPF0610011	R. Gévalo desde A. de Balvedillo hasta E. Azután	ES030MSPF0610111 ES030MSPF0610311	Х		Х
ES030MSPF0621020	Embalse Guajaraz	ES030MSPF0621020	Х		Х
ES030MSPF0625020	Embalse Finisterre	ES030MSPF0625020	Х		Х
ES030MSPF0702021	Río Tiétar desde Arroyo Sta. María hasta Embalse Torrejón-Tiétar	ES030MSPF0702021	Х		Х
ES030MSPF0711010	A. de la Gargüera hasta R.Tiétar	ES030MSPF0711110 ES030MSPF0711310 ES030MSPF0711510	Х		Х
ES030MSPF0731010	R. Arenal desde R. de Cantos hasta R. Tiétar	ES030MSPF0731110 ES030MSPF0731310	Х		Х
ES030MSPF0735010	Ggta. Torinas desde A. de la Tejada hasta R. Tiétar	ES030MSPF0735010	X		Х
ES030MSPF0801021	Río Árrago desde Arroyo Patana hasta Embalse Alcántara II	ES030MSPF0801021	X		Х
ES030MSPF0902021	Río Alagón desde Embalse Valdeobispo hasta el Río Jerte	ES030MSPF0902021	Х		Х
ES030MSPF0909010	Rivera de Hoguera hasta R. Alagón	ES030MSPF0909010	Χ		Х
ES030MSPF0911010	Arroyo del Boquerón del Rivero hasta el embalse de El Boquerón	ES030MSPF0911010	Х		Х
ES030MSPF0915020	Embalse Jerte	ES030MSPF0915020	X		Х
ES030MSPF0918010	Garganta de Oliva y otros, hasta R. Jerte	ES030MSPF0918010	X		X
ES030MSPF0925010	R. Cuerpo de Hombre a su paso por Bejar	ES030MSPF0925010	Х		Х
ES030MSPF1008010	R. Erjas entre ptos. frontera (PT05TEJ0786)	ES030MSPF1008010	Х		Х
ES030MSPF1013020	Embalse Portaje	ES030MSPF1013020	Х		Х
ES030MSPF1027020	Embalse Aldea del Cano	ES030MSPF1027020	Х		Х
ES030MSPF1031010	R. Alburrel tramo alto hasta Rivera Avid	ES030MSPF1031010	Х		Х
ES030MSPF1040020	Embalse Guadiloba	ES030MSPF1040020	Х		Х
ES030MSPF1044030	Embalse Alcuéscar	ES030MSPF1044030	Χ		Х

Código Masa 2º ciclo	Nombre Masa 2º ciclo	Códigos Masas 3 ^{er} Ciclo asociadas	Deterioro Estado/ Potencial Ecológico	Deterioro Estado Químico	Deterioro Estado Final
ES030MSPF0302010	Río Henares desde Arroyo del Sotillo hasta Río Torote	ES030MSPF0302010		х	
ES030MSPF0402010	Río Guadarrama desde R. Aulencia hasta Bargas	ES030MSPF0402010		х	
ES030MSPF0408021	Arroyo del Soto hasta Río Guadarrama	ES030MSPF0408021		Х	
ES030MSPF0515010	A de Marigarcía hasta R. Alberche	ES030MSPF0515010		Х	
ES030MSPF0927010	R. Francia desde A. del Caserito	ES030MSPF0927110 ES030MSPF0927210	Х		
ES030MSPF0928030	Embalse Ahigal	ES030MSPF0928030	Х		
ES030MSPF1004020	Embalse Valdecañas	ES030MSPF1004020	Х		
ES030MSPF1016010	A. de la Vid hasta E. Alcántara	ES030MSPF1016010	Х		
ES030MSPF1018020	Embalse Arroyo - Arrocampo	ES030MSPF1018020	Х		
ES030MSPF1020010	R. Ibor desde R. Pinarejo	ES030MSPF1020110 ES030MSPF1020210	Х		
ES030MSPF1024020	Embalse Salor	ES030MSPF1024020	Х		
ES030MSPF1042030	Embalse Arroyo de la Luz	ES030MSPF1042030	Х		
ES030MSPF0111010	Río Tajo desde R. Ablanquejo hasta E. de Entrepeñas	ES030MSPF0111010	x		
ES030MSPF0115010	Río Tajo desde nacimiento hasta Peralejos de las Truchas	ES030MSPF0115110 ES030MSPF0115210	Х		
ES030MSPF0125010	Barranco de la Hoz hasta desembocadura en Río Tajo	ES030MSPF0125010	Х		
ES030MSPF0134010	Río Guadiela desde E. Molino de Chincha hasta R. Alcantud	ES030MSPF0134010	Х		
ES030MSPF0322010	Río Bornova hasta E. de Alcorlo	ES030MSPF0322110 ES030MSPF0322310 ES030MSPF0322410	Х		
ES030MSPF0407021	Arroyo de los Combos	ES030MSPF0407021	Х		
ES030MSPF0525010	Río Becedas hasta R. Sotillo	ES030MSPF0525110 ES030MSPF0525310	х		
ES030MSPF0616010	Río Cedena hasta su confluencia con el Tajo	ES030MSPF0616010	Х		
ES030MSPF0617011	A. del Torcón desde E. del Torcón hasta R. Tajo	ES030MSPF0617011	Х		
ES030MSPF0618020	Embalse Torcón	ES030MSPF0618020	Х		
ES030MSPF0626010	R. Algodor desde A. Bracea hasta E. Finisterre	ES030MSPF0626010	Х		
ES030MSPF0704020	Embalse Rosarito	ES030MSPF0704020	Х		
ES030MSPF0719010	Garganta de Cuartos hasta R. Tiétar	ES030MSPF0719010	Х		
ES030MSPF0729020	Embalse Navalcán	ES030MSPF0729020	Х		
ES030MSPF0910010	Arroyo del Boquerón del Rivero aguas abajo del embalse de El Boquerón	ES030MSPF0910010	x		

Tabla 53. Masas de agua superficial cuyo estado ha empeorado

4.3 Estado de las masas de agua subterránea

4.3.1 Estado cuantitativo

Las aguas subterráneas se destinan fundamentalmente al abastecimiento urbano en las masas Torrelaguna (030.004), Madrid: Manzanares-Jarama (030.010), Madrid: Guadarrama-Manzanares (030.011) y Madrid: Aldea del Fresno-Guadarrama (030.012), y al regadío en las Ocaña (030.018), Algodor (030.025) y Sonseca (030.026).

De las masas de agua consideradas en riesgo cuantitativo, no hay ninguna que se evalúe en mal estado cuantitativo, tras aplicar los test establecidos en la Guía MITECO (apartado 3.2.1). No obstante, todas presentan un IE que evidencia una notable presión extractiva, como consecuencia del alto volumen de concesiones otorgado. Además, como resultado del cambio climático, es de esperar un aumento del índice de explotación, debido a la previsible disminución de la recarga por infiltración de las precipitaciones, incluso suponiendo que las extracciones no se incrementasen en el futuro. Por tanto, considerando que un aumento desordenado de las extracciones terminaría por afectar a la estrategia de uso conjunto en época de sequía para asegurar el abastecimiento a más de 6,8 millones de personas en la Comunidad de Madrid, así como al resto de usuarios actuales de las aguas subterráneas, pudiendo afectar a masas de agua superficial y de hábitats dependientes directa o indirectamente de las aguas subterráneas, es preciso fortalecer la protección de las masas de agua subterránea en riesgo, adoptando un conjunto de medidas específicas de regulación de las extracciones, que se plasman en los artículos 21, 22 y 35 de la normativa.

		TEST			RESULTADO	NCF
Código	Denominación	1	2	3		
030.004	Torrelaguna	Р	Р	Р	BUEN ESTADO CUANTITATIVO	ALTO
030.010	Madrid: Manzanares-Jarama	Р	Р	Р	BUEN ESTADO CUANTITATIVO	ALTO
030.011	Madrid: Guadarrama-Manzanares	Р	Р	Р	BUEN ESTADO CUANTITATIVO	ALTO
030.012	Madrid: Aldea del Fresno-Guadarrama	Р	Р	Р	BUEN ESTADO CUANTITATIVO	ALTO
030.018	Ocaña	Р	Р	Р	BUEN ESTADO CUANTITATIVO	ALTO
030.025	Algodor	Р	Р	Р	BUEN ESTADO CUANTITATIVO	BAJO
030.026	Sonseca	Р	Р	Р	BUEN ESTADO CUANTITATIVO	BAJO

Tabla 54. Evaluación del estado cuantitativo de las masas de agua subterránea en riesgo

(P-PASA, NP-NO PASA)

4.3.2 Estado químico

El resumen de los test se recoge en la tabla 55 de las MSBT consideradas en riesgo químico, las que se encuentran mal estado químico serían La Alcarria (030.008) y Ocaña (030.018). En relación con el anterior Plan (ciclo 2015-2021) se ha mejorado en el estado de cuatro MSBT, cuya consecución del objetivo medioambiental se había establecido para 2021 (Guadalajara (030.006), Madrid: Guadarrama-Manzanares (030.011), Madrid: Aldea del Fresno-Guadarrama (030.012)) y 2027 (Talavera (030.015)). De las masas en riesgo consideradas, estaba previsto alcanzar los objetivos medioambientales de 2021 (Alcarria) y 2027 (Ocaña). El caso de La Alcarria cumple el test 1 (evaluación general del estado químico) incumpliendo el test 3, por el mal estado de una masa de agua superficial asociada, así como el test 5, por concentración de nitratos o tendencia creciente observada de la misma, en varias estaciones de control asociadas a captaciones de agua potable.

Asimismo, para las dos nuevas MSBT (Algodor (030.025) y Sonseca (030.026)) no se dispone de una red de control ni un muestreo químico continuado, por lo que, aunque se consideran en buen estado, el nivel de confianza es bajo.

			TEST				Estado	NCE
Código	Denominación	1	2	3	4	5	Químico	NCF
030.006	Guadalajara	Р	NA	Р	Р	Р	BUENO	ALTO
030.007	Aluviales Jarama-Tajuña	Р	NA	Р	Р	NA	BUENO	ALTO
030.008	La Alcarria	Р	NA	NP	Р	NP	MALO	MEDIO
030.011	Madrid: Guadarrama- Manzanares	Р	NA	Р	Р	NA	BUENO	ALTO
030.012	Madrid: Aldea del Fresno- Guadarrama	Р	NA	Р	Р	NA	BUENO	ALTO
030.013	Aluvial del Tajo: Zorita de los Canes-Aranjuez	Р	NA	Р	Р	NA	BUENO	ALTO
030.015	Talavera	Р	NA	Р	Р	Р	BUENO	ALTO
030.016	Aluvial del Tajo: Toledo- Montearagón	Р	NA	Р	Р	NA	BUENO	BAJO
030.017	Aluvial del Tajo: Aranjuez- Toledo	Р	Р	Р	Р	NA	BUENO	BAJO
030.018	Ocaña	NP	Р	Р	NP	NP	MALO	ALTO
030.019	Moraleja	Р	NA	Р	Р	NA	BUENO	ALTO
030.020	Zarza de Granadilla	Р	NA	Р	Р	NA	BUENO	ALTO
030.021	Galisteo	Р	NA	Р	Р	Р	BUENO	ALTO
030.022	Tiétar	Р	NA	Р	Р	Р	BUENO	ALTO
030.024	Aluvial del Jarama: Guadalajara- Madrid	Р	NA	Р	Р	NA	BUENO	ALTO
030.025	Algodor	Р	NA	Р	Р	NA	BUENO	BAJO
030.026	Sonseca	Р	NA	Р	Р	NA	BUENO	BAJO

Tabla 55. Estado químico de las masas de agua subterráneas

(P-PASA, NP-NO PASA, NA-NO APLICA)